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Abstract
Inductive logic programming (ILP) is a form of machine learning. The goal of ILP is to induce a

hypothesis (a set of logical rules) that generalises training examples. As ILP turns 30, we provide a new
introduction to the field. We introduce the necessary logical notation and the main learning settings;
describe the building blocks of an ILP system; compare several systems on several dimensions; describe
four systems (Aleph, TILDE, ASPAL, and Metagol); highlight key application areas; and, finally, summarise
current limitations and directions for future research.

1. Introduction

A remarkable feat of human intelligence is the ability to learn knowledge. A key form of learning is
induction: the process of forming general rules (hypotheses) from specific observations (examples). For
instance, suppose you draw 10 red balls out of a bag, then you might induce a hypothesis (a rule) that
all the balls in the bag are red. Having induced this hypothesis, you can predict the colour of the next
ball out of the bag.

Machine learning (ML) automates induction. ML induces a hypothesis (also called a model) that
generalises training examples (observations). For instance, given labelled images of cats and dogs, the
goal of ML is to induce a hypothesis that predicts whether an unlabelled image is a cat or a dog. Inductive
logic programming (ILP) (Muggleton, 1991) is a form of ML. As with other forms of ML, the goal of ILP is to
induce a hypothesis that generalises training examples. However, whereas most forms of ML use tables1

to represent data (examples and hypotheses), ILP uses logic programs (sets of logical rules). Moreover,
whereas most forms of ML learn functions, ILP learns relations. We illustrate ILP using four scenarios.

1.1 Scenario 1: Concept Learning

Suppose we want to predict whether someone is happy. To do so, we ask four people (alice, bob, claire,
and dave) whether they are happy. We also ask for additional information, specifically their job, their
company, and whether they like lego. Many ML approaches, such as a decision tree or neural network
learner, would represent this data as a table, such as Table 1. Using standard ML terminology, each row
represents a training example, the first three columns (name, job, and enjoys lego) represent features,
and the final column (happy) represents the label or classification. Given this table as input, the goal is to
induce a hypothesis that generalises the training examples. For instance, a neural network learner would
learn a table of numbers that weight the importance of the features (or hidden features in a multi-layer
network). We can then use the hypothesis to predict labels for unseen examples.

1. Table-based learning is attribute-value learning. See De Raedt (2008) for an overview of the hierarchy of representations.
Note that not all other forms of ML use tables. For instance, Rocktäschel and Riedel (2017) use embeddings.
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Name Job Enjoys lego Happy

alice lego builder yes yes
bob lego builder no no
claire estate agent yes no
dave estate agent no no

Table 1: A table representation of a ML task.

Rather than represent data as tables, ILP represents data as logic programs, sets of logical rules. The
main building block of a logic program is an atom. An atom is of the form p (x1, . . . , xn ), where p is a
predicate symbol of arity n (takes n arguments) and each xi is a term. A logic program uses atoms to
represent data. For instance, we can represent that alice enjoys lego as the atom enjoys_lego(alice)

and that bob is a lego builder as lego_builder(bob).
An ILP task is formed of three sets (B , E +, E −). The setB is background knowledge (BK). BK is similar

to features but can contain relations and information indirectly associated with the examples. We can
represent the data in Table 1 as the set B :

B =




lego_builder(alice).

lego_builder(bob).

estate_agent(claire).

estate_agent(dave).

enjoys_lego(alice).

enjoys_lego(claire).




ILP usually follows the closed world assumption (Reiter, 1977), so if anything is not explicitly true we
assume it is false. With this assumption, we do not need to explicitly state that enjoys_lego(bob) and
enjoys_lego(dave) are false.

The sets E + and E − represent positive and negative examples respectively. We can represent the
examples in Table 1 as:

E+ =
{
happy(alice).

}
E− =





happy(bob).

happy(claire).

happy(dave).





Given these sets, the goal of ILP is to induce a hypothesis that with the BK logically entails as many
positive and as few negative examples as possible. A hypothesis (H ) in ILP is a set of logical rules, such
as:

H =
{
[A. lego_builder(A) ∧ enjoys_lego(A) → happy(A)

}

This hypothesis contains one rule that says that for all A, if A is a lego builder (lego_builder(A))
and enjoys lego (enjoys_lego(A)), then A is happy (happy(A)). Having induced a rule, we can deduce
knowledge from it. For instance, this rule says if lego_builder(alice) and enjoys_lego(alice)

are true then happy(alice) must also be true.
The above rule is written in a standard first-order logic notation. We usually write logic programs in

reverse implication form:
head:- body1, body2, . . . , bodyn

2
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A rule in this form states that the head atom is true when every bodyi atom is true. A comma denotes
conjunction. In logic programming, every variable is assumed to be universally quantified, so we drop
quantifiers. We also flip the direction of the implication symbol→ to← and often replace it with :-

because it is easier to use when writing computer programs. Therefore, in logic programming notation,
the above hypothesis is:

H =
{
happy(A):- lego_builder(A),enjoys_lego(A).

}

Logic programs are declarative which means that the order of atoms in a rule does not change its se-
mantics2. For instance, the above hypothesis is semantically identical to this one:

H =
{
happy(A):- enjoys_lego(A),lego_builder(A).

}

1.2 Scenario 2: Data Curation

Suppose we want to learn a string transformation programs from input ↦→ output examples, such as
program that returns the last character of a string:

Input Output

machine e
learning g
algorithm m

Many forms of ML would represent these examples as a table, such as using a one-hot-encoding tech-
nique3. By contrast, ILP represents these examples as atoms, such as:

E+ =




last([m,a,c,h,i,n,e], e).

last([l,e,a,r,n,i,n,g], g).

last([a,l,g,o,r,i,t,m], m).




The symbol last is the target predicate that we want to learn (the relation to generalise). The first
argument of each atom represents an input list and the second argument represents an output value. To
induce a hypothesis for these examples, we need to provide suitable BK, such as common list operations:

Name Description Example

empty(A) A is an empty list empty([]).

head(A,B) B is the head of the list A head([c,a,t],c).

tail(A,B) B is the tail of the list A tail([c,a,t],[a,t]).

Given the aforementioned examples and BK with the above list operations, the goal is to search for a
hypothesis that generalises the examples. At a high level, an ILP system builds a hypothesis by combin-
ing information from the BK and examples. The set of all possible hypotheses is called the hypothesis

2. This statement about the declarative nature of logic programs is imprecise. The order of rules often matters in practice,
such as in Prolog. We discuss this issue in detail in Section 2.3.

3. Using the simplest binary one-hot-encoding approach, we would have a feature for every letter and an example would
have the value 1 for that feature if the letter appears in the example; otherwise, the value will be 0.

3
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space. In other words, the goal of an ILP system is to search the hypothesis space for a hypothesis that
generalises the examples.

In this data curation scenario, an ILP system could induce the hypothesis:

H =

{
last(A,B):- head(A,B),tail(A,C),empty(C).

last(A,B):- tail(A,C),last(C,B).

}

This hypothesis contains two rules. The first rule says that B is the last element of A when B is the head
of A and the tail of A is empty. The second rule says that B is the last element of A when B is the last
element of the tail of A.

1.3 Scenario 3: Program Synthesis

Suppose we have the following positive and negative examples, again represented as atoms, where the
first argument is an unsorted list and the second argument is a sorted list:

E+ =

{
sort([2,1],[1,2]).

sort([5,3,1],[1,3,5]).

}
E− =

{
sort([2,1],[2,1]).

sort([1,3,1],[1,1,1]).

}

Also suppose that as BK we have the same empty, head, and tail relations from the string transforma-
tion scenario and two additional relations:

Name Description Example

partition(Pivot,A,L,R) L is a sublist of A containing elements
less than or equal to Pivot and R

is a sublist of A containing elements
greater than the pivot

pivot(3,[4,1,5,2],[1,2],[4,5]).

append(A,B,C) true when C is the concatenation of A
and B

append([a,b,c],[d,e],[a,b,c,d,e]).

Given these sets, an ILP system could induce the hypothesis:

H =




sort(A,B):- empty(A),empty(B).

sort(A,B):- head(A,Pivot),partition(Pivot,A,L1,R1),

sort(L1,L2),sort(R1,R2),append(L2,R2,B).




This hypothesis corresponds to the quicksort algorithm (Hoare, 1961) and generalises to lists of arbitrary
length and elements not seen in the training examples. This scenario shows that ILP is a form of program
synthesis (Shapiro, 1983), where the goal is to automatically build executable programs.

1.4 Scenario 4: Scientific Discovery

As Srinivasan et al. (1994) state, “There is more to scientific theory formulation than data fitting. To be
acceptable, a theory must be understandable and open to critical analysis”. For this reason, ILP has been
widely used for scientific discovery. For instance, King et al. (1992) use ILP to model structure-activity
relationships for drug design. In this work, an ILP system takes as input positive and negative examples
and BK. The positive examples are paired examples of greater activity. For instance, the positive example
great(d20,di5) states that drug 20 has higher activity than drug 15. Negative examples are examples
of drug pairings with lower activity. The BK contains information about the chemical structures of drugs

4
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and the properties of substituents4. For instance, the atom struc(d35,no2,nhcoch3,h) states that
drug 35 has no2 substituted at position 3, nhcoch3 substituted at position 4, and no substitution at
position 5, and the atom flex(no2,3) states that no2 has flexibility 3. Given such examples and BK, the
ILP system Golem (Muggleton & Feng, 1990) induces multiple rules to explain the examples, including
this one:

great(A,B):- struc(A,C,D,E),struc(B,F,h,h),h_donor(C,hdonO),

polarisable(C,polaril),flex(F,G),flex(C,H),

great_flex(G,H),great6_flex(G).

This rule says that Drug A is better than drug B if drug B has no substitutions at positions 4 and 5, and
drug B at position 3 has flexibility >6, and drug A at position 3 has polarisability = 1, and drug A at position
3 has hydrogen donor = 0, and drug A at position 3 is less flexible than drug B at position 3.

As this scenario illustrates, ILP can learn human-readable hypotheses. The interpretability of such
rules is crucial to allow domain experts to gain insight.

1.5 Why ILP?

Most ML approaches rely on statistical inference. By contrast, ILP relies on logical inference and uses
techniques from automated reasoning and knowledge representation. Table 2 shows a simplified com-
parison between ILP and statistical ML approaches. We briefly discuss these differences.

Statistical ML ILP

Examples Many Few
Data Tables Logic programs
Hypotheses Propositional/functions First-/higher-order relations
Explainability Difficult Possible
Knowledge transfer Difficult Easy

Table 2: A simplified comparison between ILP and statistical ML approaches based on the table by Gul-
wani et al. (2015).

Examples. Many forms of ML are notorious for their inability to generalise from small numbers of train-
ing examples, notably deep learning (Marcus, 2018; Chollet, 2019; Bengio et al., 2019). As Evans and
Grefenstette (2018) point out, if we train a neural system to add numbers with 10 digits, it can generalise
to numbers with 20 digits, but when tested on numbers with 100 digits, the predictive accuracy drastically
decreases (Reed & de Freitas, 2016; Kaiser & Sutskever, 2016). By contrast, ILP can induce hypotheses
from small numbers of examples, often from a single example (Lin et al., 2014; Muggleton et al., 2018).
This data efficiency is important when we only have small amounts of training data. For instance, Gulwani
(2011) applies techniques similar to ILP to induce programs from user-provided examples in Microsoft
Excel to solve string transformation problems, where it is infeasible to ask a user for thousands of ex-
amples. This data efficiency has made ILP attractive in many real-world applications, especially in drug
design, where large numbers of examples are not always easy to obtain.

4. An atom or group other than hydrogen on a molecule.
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Data. Using logic programs to represent data allows ILP to learn with complex relational information
and for easy integration of expert knowledge. For instance, if learning causal relations in causal networks,
a user can encode constraints about the network (Inoue et al., 2013). If learning to recognise events, a
user could provide the axioms of the event calculus (Katzouris et al., 2015). Relational BK allows us to
succinctly represent infinite relations. For instance, it is trivial to define a summation relation over the
infinite set of natural numbers (add(A,B,C):- C = A+B). By contrast, tabled-based ML approaches
are mostly restricted to finite data and cannot represent this information. For instance, it is impossible
to provide a decision tree learner (Quinlan, 1986, 1993) this infinite relation because it would require an
infinite feature table. Even if we restricted ourselves to a finite set of n natural numbers, a table-based
approach would still need n3 features to represent the complete summation relation.

Hypotheses. Because they are closely related to relational databases, logic programs naturally support
relational data such as graphs. Because of the expressivity of logic programs, ILP can learn complex re-
lational theories, such as cellular automata (Inoue et al., 2014; Evans et al., 2021), event calculus theories
(Katzouris et al., 2015), and Petri nets (Bain & Srinivasan, 2018), and various forms of non-monotonic
programs (Bain & Muggleton, 1991; Inoue & Kudoh, 1997; Sakama, 2001). Because of the symbolic nature
of logic programs, ILP can reason about hypotheses, which allows it to learn optimal programs, such as
minimal time-complexity programs (Cropper & Muggleton, 2019) and secure access control policies (Law
et al., 2020). Moreover, because induced hypotheses have the same language as the BK, they can be
stored in the BK, making transfer learning trivial (Lin et al., 2014).

Explainability. Because of logic’s similarity to natural language, logic programs can be easily read by
humans, which is crucial for explainable AI5. Because of this interpretability, ILP has long been used for
scientific discovery6 (King et al., 1992; Srinivasan et al., 1996, 1997, 2006; Kaalia et al., 2016). For instance,
the Robot Scientist (King et al., 2004) is a system that uses ILP to generate hypotheses to explain data
and can also automatically devise experiments to test the hypotheses, physically run the experiments,
interpret the results, and then repeat the cycle. Whilst researching yeast-based functional genomics,
the Robot Scientist became the first machine to independently discover new scientific knowledge (King
et al., 2009).

Knowledge transfer. Most ML algorithms are single-task learners and cannot reuse learned knowledge.
For instance, although AlphaGo (Silver et al., 2016) has super-human Go ability, it cannot reuse this knowl-
edge to play other games, nor the same game with a slightly different board. By contrast, because of its
symbolic representation, ILP naturally supports lifelong and transfer learning (Torrey et al., 2007; Crop-
per, 2019), which is considered essential for human-like AI (Lake et al., 2016). For instance, when inducing
solutions to a set of string transformation tasks, such as those in Scenario 2, Lin et al. (2014) show that an
ILP system can automatically identify easier problems to solve, learn programs for them, and then reuse
the learned programs to help learn programs for more difficult problems. Moreover, they show that this
knowledge transfer approach leads to a hierarchy of reusable programs, where each program builds on
simpler programs.

5. Muggleton et al. (2018) (also explored by Ai et al. (2021)) evaluate the comprehensibility of ILP hypotheses using Michie’s
(1988) notion of ultra-strong ML, where a learned hypothesis is expected to not only be accurate but to also demonstrably
improve the performance of a human when provided with the learned hypothesis.

6. Muggleton (1999b) provides a (slightly outdated) summary of scientific discovery using ILP.

6



Inductive Logic Programming At 30: A New Introduction

1.6 How Does ILP Work?

Building an ILP system (Figure 1) requires making several choices or assumptions. Understanding these
assumptions is key to understanding ILP. We discuss these assumptions in Section 4 but briefly sum-
marise them now.

User-provided input Learning output

Examples

last([m,a,c,h,i,n,e], e).

last([l,e,a,r,n,i,n,g], g).

last([a,l,g,o,r,i,t,m], m).

Background knowledge

empty(A) A is an empty list
head(A,B) B is the head of the list A
tail(A,B) B is the tail of the list A

ILP system
Program

last(A,B):- tail(A,C),empty(C),head(A,B).

last(A,B):- tail(A,C),last(C,B).

Search space over programs
each node in the search tree is a program

last(A,B):- tail(A,B). last(A,B):- tail(A,C),empty(C),head(A,B).

Figure 1: An ILP system learns programs from examples and BK. The system learns by searching a space
of possible programs which are constructed from BK.

Learning setting. The central choice is how to represent examples. The examples in the scenarios in this
section include boolean concepts (lego_builder) and input-output examples (string transformation and
sorting). Although boolean concepts and input-output examples are common representations, there are
other representations, such as interpretations (Blockeel & De Raedt, 1998) and transitions (Inoue et al.,
2014). The representation determines the learning setting which in turn defines what it means for a
program to solve the ILP problem.

Representation language. ILP represents data as logic programs. There are, however, many logic pro-
gramming languages, each with strengths and weaknesses. For instance, Prolog is a Turing-complete
logic programming language. Datalog is a syntactical subset of Prolog that sacrifices features (such as
data structures) and expressivity (it is not Turing-complete) to gain efficiency and decidability. Some lan-
guages support non-monotonic reasoning, such as answer set programming (Gebser et al., 2012). Choos-
ing a suitable representation language is crucial in determining which problems a system can solve.

Defining the hypothesis space. The fundamental ILP problem is to search the hypothesis space for a
suitable hypothesis. The hypothesis space contains all possible programs that can be built in the chosen
representation language. Unrestricted, the hypothesis space is infinite, so it is vital to restrict it to make
the search feasible. As with all ML techniques, ILP restricts the hypothesis space by enforcing an inductive
bias (Mitchell, 1997). A language bias enforces restrictions on hypotheses, such as how many variables
or relations can be in a hypothesis. Choosing an appropriate language bias is necessary for efficient
learning and is a major challenge.

Search method. Having defined the hypothesis space, the problem is to efficiently search it. The tradi-
tional way to categorise approaches is whether they use a top-down or bottom-up search, where gener-
ality orders the search space7. Top-down approaches (Quinlan, 1990; Blockeel & De Raedt, 1998; Bratko,

7. A hypothesis h1 is more general than h2 if h1 entails at least as many examples as h2 . A hypothesis h1 is more specific
than h2 if h1 entails fewer examples then h2 .
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1999; Muggleton et al., 2008; Ribeiro & Inoue, 2014) start with an overly general hypothesis and try to spe-
cialise it. Bottom-up approaches (Muggleton, 1987; Muggleton & Buntine, 1988; Muggleton & Feng, 1990;
Inoue et al., 2014) start with an overly specific hypothesis and try to generalise it. Some approaches com-
bine the two (Muggleton, 1995; Srinivasan, 2001; Cropper, 2022). A third approach has recently emerged
called meta-level ILP (Inoue et al., 2013; Muggleton et al., 2015; Inoue, 2016; Law et al., 2020; Cropper &
Morel, 2021). This approach represents an ILP problem as a meta-level logic program, i.e. a program
that reasons about programs. Meta-level approaches often delegate the search for a hypothesis to an
off-the-shelf solver (Corapi et al., 2011; Muggleton et al., 2014; Law et al., 2014; Kaminski et al., 2018; Evans
et al., 2021; Cropper & Morel, 2021) after which the meta-level solution is translated back to a standard
solution for the ILP problem.

1.7 A Brief History

That ILP is a form of ML surprises many researchers who only associate ML with statistical techniques.
However, if we followMitchell’s (1997) definition of ML8 then ILP is no different from other ML approaches:
it improves givenmore examples. The confusion seems to come from ILP’s use of logic as a representation
for learning. However, as Domingos (2015) points out, there are generally five areas of ML: symbolists,
connectionists, Bayesian, analogisers, and evolutionists. ILP is in the symbolic learning category.

Turing can be seen as one of the first symbolist, as he proposed using a logical representation to
build thinking machines (Turing, 1950; Muggleton, 1994a). McCarthy (1959) made the first comprehensive
proposal for the use of logic in AI with his advice seeker. Much work on using logic for ML soon followed.
Recognising the limitations of table-based representations, Banerji (1964) proposed using predicate logic
as a representation language for learning. Michalski’s (1969) work on the AQ algorithm, which induces
rules using a set covering algorithm, has greatly influenced many ILP systems. Plotkin’s (1971) work on
subsumption and least general generalisation has influenced nearly all of ILP, especially theory. Other
notable work includes Vera (1975) on induction algorithms for predicate calculus and Sammut’s (1981)
MARVIN system, one of the first to learn executable programs. Shapiro’s (1983) work on inducing Pro-
log programs made major contributions to ILP, including the concepts of backtracking and refinement
operators. Quinlan’s (1990) FOIL system is one of the most well-known ILP systems and is a natural ex-
tension of ID3 (Quinlan, 1986) from the propositional setting to the first-order setting. Other notable
contributions include inverse resolution (Muggleton & Buntine, 1988), which was also one of the earliest
approaches at predicate invention. ILP as a field was founded by Muggleton (1991), who stated that it lies
at the intersection of ML and knowledge representation.

1.8 Contributions

There are several excellent ILP survey papers (Sammut, 1993; Muggleton & De Raedt, 1994; Muggleton,
1999a; Page & Srinivasan, 2003; Muggleton et al., 2012) and books (Nienhuys-Cheng & Wolf, 1997; De
Raedt, 2008). In this paper, we want to provide a new introduction to the field aimed at a general AI
reader interested in symbolic learning. We differ from existing surveys by including, and mostly focusing
on, recent developments (Cropper et al., 2020a), such as new methods for learning recursive programs,
predicate invention, and meta-level search. Although we cover work on inducing Datalog and answer
set programs, we mostly focus on approaches that induce definite programs, and in particular Prolog

8. According to Mitchell’s (1997), an algorithm is said to learn from experience E with respect to some class of tasksT and
performance measure P , if its performance at tasks inT , as measured by P , improves with experience E .
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programs. We do not detail work that combines neural networks with ILP, to which there are already
suitable survey papers (d’Avila Garcez et al., 2019; Raedt et al., 2020).

The rest of the paper is organised as follows:

• We describe necessary logic programming notation (Section 2).
• We define the standard ILP learning settings (Section 3).
• We describe the basic assumptions required to build an ILP system (Section 4).
• We compare many ILP systems and describe the features they support (Section 5).
• We describe four ILP systems in detail (Aleph, TILDE, ASPAL, and Metagol) (Section 6).
• We summarise some of the key application areas of ILP (Section 7).
• We briefly survey related work (Section 8).
• We conclude by outlining the main current limitations of ILP and suggesting directions for future
research (Section 9)

2. Logic Programming

ILP uses logic programs (Kowalski, 1974) to represent BK, examples, and hypotheses. A logic program
is fundamentally different from an imperative program (e.g. C, Java, Python) and very different from a
functional program (e.g. Haskell, OCaml). Imperative programming views a program as a sequence of
step-by-step instructions where computation is the process of executing the instructions. By contrast,
logic programming views a program as a logical theory (a set of logical rules) where computation is
various forms of deduction over the theory, such as searching for a proof, refutation, or a model of it.
Another major difference is that a logic program is declarative (Lloyd, 1994) because it allows a user to
state what a program should do, rather than how it should work. This declarative nature means that the
order of rules in a logic program does not (usually) matter.

In the rest of this section, we introduce the basics of logic programming necessary to understand the
rest of this paper. We cover the syntax and semantics and briefly introduce different logic programming
languages. We focus on concepts necessary for understanding ILP and refer the reader to more detailed
expositions of logic programming (Nienhuys-Cheng & Wolf, 1997; De Raedt, 2008; Lloyd, 2012), Prolog
(Sterling & Shapiro, 1994; Bratko, 2012), and ASP (Gebser et al., 2012) for more information. We, therefore,
omit descriptions of many important concepts in logic programming, such as stratified negation. Readers
comfortable with logic can skip this section.

2.1 Syntax

We first define the syntax of a logic program:

• A variable is a string of characters starting with an uppercase letter, e.g. A, B , and C .
• A function symbol is a string of characters starting with a lowercase letter.
• A predicate symbol is a string of characters starting with a lowercase letter, e.g. job or happy. The
arity n of a function or predicate symbol p is the number of arguments it takes and is denoted as
p/n , e.g. happy/1, head/2, and append/3.

• A constant symbol is a function symbol with zero arity, e.g. alice or bob.
• A term is a variable, or a constant/function symbol of arity n immediately followed by a tuple of
n terms.
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• A term is ground if it contains no variables.
• An atom is a formula p (t1, . . . , tn ), where p is a predicate symbol of arity n and each t i is a term,
e.g. lego_builder(alice), where lego_builder is a predicate symbol of arity 1 and alice is
a constant symbol.

• An atom is ground if all of its terms are ground, e.g. lego_builder(alice) is ground but
lego_builder(A), where A is a variable, is not ground.

• The symbol not denotes negation as failure, where an atom is false if it cannot be proven true.
• A literal is an atom A (a positive literal) or its negation not A (a negative literal). For instance,
lego_builder(alice) is both an atom and a literal but not lego_builder(alice) is only a
literal because it includes the negation symbol not.

• A clause is of the form h1, . . . , hn :- b1, . . . ,bm where each hi and bj is a literal and the
symbol , denotes conjunction. The symbols hi are called the head of the clause. The symbols bi
are called the body of the clause. We sometimes use the name rule instead of clause.

• A Horn clause is a clause with at most one positive literal.
• A definite clause is clause of the form h :- b1, b2, . . . , bn , i.e. a clause with only one
head literal, e.g. qsort(A,B):- empty(A),empty(B). Informally, a definite clause states that
the head is true if the body is true, i.e. all of the body literals are proven true. For instance, the
rule happy(A):- lego_builder(A),enjoys_lego(A) says that happy(A) is true when both
lego_builder(A) and enjoys_lego(A) are true.

• A clause is ground if it contains no variables.
• A clausal theory is a set of clauses.
• A goal (also called a constraint) is a clause of the form :- b1, b2, . . . , bn , i.e. a clause without
a head, e.g. :- head(A,B),head(B,A).

• A unit clause is a clause with no body. For unit clauses, we usually omit the :- symbol, e.g.
loves(alice,X).

• A fact is a ground unit clause loves(andrew,laura).
• Simultaneously replacing variables v1, . . . ,vn in a clause with terms t1, . . . , tn is called a sub-
stitution and is denoted as θ = {v1/t1, . . . ,vn/tn }. For instance, applying the substitution
θ = {A/bob} to loves(alice,A) results in loves(alice,bob).

• A substitution θ unifies atoms A and B in the case Aθ = Bθ. Note that atoms A and B need
to have a distinct set of variables, i.e., they should not have a variable with the same name, for
unification to work properly.

2.2 Semantics

The semantics of logic programs is based on the concepts of a Herbrand universe, base, and interpre-
tation. All three concepts build upon a given vocabulary V containing all constants, functions, and
predicate symbols of a program. The Herbrand universe is the set of all ground terms that can be formed
from the constants and functions symbols inV . For instance, the Herbrand universe of the lego builder
example (Section 1.1) is

{alice, bob, claire, dave}

If the example also contained the function symbol age/1, then the Herbrand universe would be the
infinite set:
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{alice, bob, claire, dave, age(alice), age(bob), age(age(alice)), . . . }

The Herbrand base is the set of all ground atoms that can be formed from the predicate symbols in
V and the terms in the corresponding Herbrand universe. For instance, the Herbrand base of the lego
builder example is:




happy(alice), happy(bob), happy(claire), happy(dave),

lego_builder(alice), lego_builder(bob), lego_builder(claire), lego_builder(dave),

estate_agent(alice), estate_agent(bob), estate_agent(claire), estate_agent(dave),

enjoys_lego(alice), enjoys_lego(bob), enjoys_lego(claire), enjoys_lego(dave)




A Herbrand interpretation assigns truth values to the elements of a Herbrand base. By convention, a
Herbrand interpretation includes true ground atoms, assuming that every atom not included is false. For
instance, the Herbrand interpretation corresponding to the example in Section 1.1 is:
{
happy(alice), lego_builder(alice), lego_builder(bob), estate_agent(claire),

estate_agent(dave), enjoys_lego(alice), enjoys_lego(claire)

}

A Herbrand interpretation I is a Herbrand model for a set of clauses C if for all clauses h1;...;hn:-
b1,..,bm ∈ C and for all ground substitutions θ: {b1θ,...,bmθ} ⊂ I → {h1θ,...,hnθ} ∩I , ∅.
That is, a Herbrand interpretation I is a Herbrandmodel of a clause if for all substitutions θ for which the
body literals, after applying the substitution θ, are true in I , at least one of the head literals is also true
in I . For instance, the Herbrand interpretation from the previous paragraph is a model for the clause:

happy(A):- lego_builder(A), enjoys_lego(A).

because every substitution that makes the body (θ={A/alice}) true also makes the head true. By
contrast, the following interpretation is not a model of the clause because the substitution θ={A/dave}
makes the body true but not the head:

enjoys_lego(A):- estate_agent(A).

A definite clause c is a logical consequence of a theory T if every Herbrand model of T is also a model
of c.

This brings us to one of the core concepts in ILP entailment. When a clause c is a logical consequence
of a theory T, we say that c is entailed by T, written T |= c. The concept of entailment will reappear
throughout this text, most prominently when we discuss various learning settings in ILP (Section 3). It is
therefore important to have a firm grasp of its meaning.

2.3 Logic Programming Languages

There are various logic programming languages. We now cover some of the most important ones for
ILP. Logic programming is based on clausal logic. Clausal programs are sets of clauses. Robinson (1965)
showed that a single rule of inference (the resolution principle) is both sound and refutation complete
for clausal logic. However, reasoning about full clausal logic is computationally expensive (Nienhuys-
Cheng & Wolf, 1997). Therefore, most work in ILP focuses on fragments of clausal logic, such as Horn
programs: clauses with at most one positive literal. All programs mentioned in the introduction are Horn
programs, such as the program for extracting the last element of the list:

last(A,B):- tail(A,C),empty(C),head(A,B).

last(A,B):- tail(A,C),last(C,B).
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One reason for focusing on Horn theories, rather than full clausal theories, is SLD-resolution (Kowalski
& Kuehner, 1971), an inference rule that sacrifices expressibility for efficiency. For instance, the clause
p (a)∨p (b) cannot be expressed in Horn logic because it has two positive literals. Horn logic is, however,
still Turing complete (Tärnlund, 1977).

Prolog (Kowalski, 1988; Colmerauer & Roussel, 1993) is a logic programming language based on SLD-
resolution and is therefore restricted to Horn clauses. Most Prolog implementations (Wielemaker et al.,
2012; Costa et al., 2012) allow extra-logical features, such as cuts. Prolog is not purely declarative because
of constructs like cut, which means that a procedural reading of a Prolog program is needed to under-
stand it. In other words, the order of clauses in a Prolog program has a major influence on its execution
and results.

Datalog is a fragment of definite clausal theories (clausal theories that contain only definite clauses).
The main two restrictions are (i) every variable in the head literal must also appear in a body literal, and
(ii) complex terms as arguments of predicates are disallowed, e.g. p(f(1),2) or lists. Therefore, the
list manipulation programs from previous sections cannot (easily) be expressed in Datalog9. Datalog
is, however, sufficient for the happy Scenario because structured terms are unnecessary. Compared to
definite programs, the main advantage of Datalog is decidability (Dantsin et al., 2001). However, this
decidability comes at the cost of expressivity as Datalog is not Turing complete. By contrast, definite
programs with function symbols have the expressive power of Turing machines and are consequently
undecidable (Tärnlund, 1977). Unlike Prolog, Datalog is purely declarative.

2.3.1 Non-monotonic Logic

A logic is monotonic when adding knowledge to it does not reduce the logical consequences of that the-
ory. A logic is non-monotonic if some conclusions can be removed/invalidated by adding more knowl-
edge. Definite programs aremonotonic because anything that could be deducedbefore a (definite) clause
is added to it can still be deduced after it is added. In other words, adding a (definite) clause to a definite
program cannot remove the logical consequences of the program. For instance, consider the following
propositional program:

sunny.

happy:- sunny.

This program states it is sunny and that I am happy if it is sunny. We can therefore deduce that I am
happy because it is sunny. Now suppose that we added another rule:

sunny.

happy:- sunny.

happy:- rich.

This new rule states that I am also happy if I am rich. Note that by the closed world assumption, we know
I am not rich. After adding this rule, we can still deduce that I am happy from the first rule.

The logic of definite clauses with negation as failure (NAF) (Clark, 1977) is non-monotonic, which
brings us to the special class of normal logic programs, which take the following form:

h :- b1,...,bn, not bn+1,..., not bm.

9. It is possible to represent lists as a set of facts.
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Informally, a normal rule states that the head is true if all b1,...,bn are true and all bn+1,...,bm are
false. That is, an atom is false if it cannot be proven true. That an atom cannot be proven true does
not mean that it is missing from a knowledge base. Instead, it additionally means that there no rule can
prove it true. Assuming that a logical statement is false if it cannot be proven true is known as following
the closed world assumption.

Now consider the following non-monotonic program:

sunny.

happy:- sunny, not weekday.

This program states it is sunny and I am happy if it is sunny and it is not a weekday. By the closed world
assumption, we can deduce that it is not a weekday, so we can deduce that I am happy because it is
sunny and it is not a weekday. Now suppose we added knowledge that it is a weekday.

sunny.

happy:- sunny, not weekday.

weekday.

Then we can no longer deduce that I am happy. In other words, by adding knowledge that it is a weekday,
the conclusion that I am happy no longer holds.

There are many different semantics ascribed to non-monotonic programs, including completion
(Clark, 1977), well-founded (Gelder et al., 1991), and stable model (answer set) (Gelfond & Lifschitz, 1988)
semantics. Discussing the differences of these semantics is beyond the scope of this paper.

Answer set programming. Answer set programming is a form of logic programming based on stable
model (answer set) semantics (Gelfond & Lifschitz, 1988). Whereas a definite logic program has only one
model (the least Herbrandmodel), an ASP program can have one, many, or even nomodels (answer sets).
This makes ASP particularly attractive for expressing common-sense reasoning (Law et al., 2018). Similar
to Datalog, an answer set program is purely declarative. ASP also supports additional language features,
such as aggregates and weak and hard constraints. Computation in ASP is the process of finding models.
Answer set solvers perform the search and thus generate models. Most ASP solvers (Gebser et al., 2012),
in principle, always terminate (unlike Prolog query evaluation, which may lead to an infinite loop). We
refer the reader to the excellent book by Gebser et al. (2012) for more information.

2.4 Generality

A key concept in ILP is the generality order over hypotheses (logic programs). A generality order helps
structure the search over the hypothesis space by reasoning about the relative properties of two pro-
grams. A generality ordering tells us whether a program p1 is more general than a program p2, i.e.,
whether all logical consequence of p2 are also logical consequences of p1. Equivalently, if p1 is more
general than p2, then p2 is more specific than p1.

Most approaches reason about the generality of programs syntactically through θ-subsumption (or
subsumption for short) (Plotkin, 1971). To understand subsumption, we need to understand that a clause
can be seen as a finite (possibly empty) set of literals, implicitly representing their disjunction. For
instance, the clause:

happy(A) :- lego_builder(A), enjoys_lego(A).
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is equivalent to (where ¬ denotes classical negation):

{happy(A),¬lego_builder(A),¬enjoys_lego(A)}.

We representing clauses as sets, we can define subsumption:

Definition 1 (Clausal subsumption). A clause C1 subsumes a clause C2 if and only if there exists a sub-
stitution θ such that C1θ ⊆ C2.

Example 1 (Clausal subsumption). Let C1 and C2 be the clauses:

C1 = f(A,B):- head(A,B)

C2 = f(X,Y):- head(X,Y),odd(Y) .

Then C1 subsumes C2 because
{
f(A,B), ¬head(A,B)

}
θ ⊆

{
f(X,Y), ¬head(X,Y),¬odd(Y)

}

with θ = {A/X ,Y /B}.

Conversely, a clause C2 is more specific than a clause C1 if C1 subsumes C2.10

In principle, we could check the generality of two programs by comparing the consequences they en-
tail. However, a program might entail an infinite set of consequences (e.g. when structured terms, such
as lists, are involved) which would prevent us from establishing the generality relation between two
programs. In other words, checking entailment between clauses is undecidable (Church, 1936). By con-
trast, checking subsumption between clauses is decidable (Plotkin, 1971), although, in general, deciding
subsumption is a NP-complete problem (Nienhuys-Cheng & Wolf, 1997).

3. Inductive Logic Programming

In the introduction, we described four ILP scenarios. In each case, the problem was formed of three sets
B (background knowledge), E + (positive examples), and E − (negative examples). We informally stated
the ILP problem is to induce a hypothesis H that with B generalises E + and E −. We now formalise this
problem.

According to De Raedt (1997), there are three main ILP learning settings: learning from entailment
(LFE), interpretations (LFI), and satisfiability (LFS). LFE and LFI are by far the most popular learning set-
tings, so we only cover these two. Other recent work focuses on learning from transitions (Inoue et al.,
2014; Evans et al., 2021; Ribeiro et al., 2020) and learning from answer sets (Law et al., 2014). We refer the
reader to these other works for an overview of those learning settings.

In each setting, the symbol X denotes the example/instance space, the set of examples for which a
concept is defined; B denotes the language of background knowledge, the set of all clauses that could
be provided as background knowledge; and H denotes the hypothesis space, the set of all possible
hypotheses.

10. This notion of subsumption is known as weak subsumption. An alternative notion is strong subsumptions which addi-
tionally performs factoring, i.e., it remove redundant literals. As an example, p(X,Y) :- q(X,Y), q(Y,X). strongly
subsumes p(Z,Z) :- q(Z,Z). with θ = {X /Z ,Y /Z } because p(Z,Z) :- q(Z,Z), q(Z,Z). is equivalent to
p(Z,Z) :- q(Z,Z).. It does not, however, weakly subsume it as the number of literals is different.
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3.1 Learning From Entailment

LFE is by far the most popular ILP setting (Shapiro, 1983; Muggleton, 1987; Muggleton & Buntine, 1988;
Muggleton& Feng, 1990; Quinlan, 1990; Muggleton, 1995; Bratko, 1999; Srinivasan, 2001; Ray, 2009; Ahlgren
& Yuen, 2013; Muggleton et al., 2015; Cropper & Muggleton, 2016; Kaminski et al., 2018; Cropper & Morel,
2021). The LFE problem is based on the notion of entailment, which we discussed in Section 2.2, and two
properties of the hypotheses: completeness and consistency. A hypothesis is complete if it entails all
positive examples. A hypothesis is consistent if it does not entail any negative example.

The LFE problem is:

Definition 2 (Learning from entailment). Given a tuple (B, E +
, E −) where:

• B ⊆B denotes background knowledge
• E + ⊆ X denotes positive examples of the concept
• E − ⊆ X denotes negative examples of the concept

The goal LFE is to return a hypothesis H ∈ H such that:

• [e ∈ E +
, H ∪ B |= e (i.e. H is complete)

• [e ∈ E −, H ∪ B 6 |= e (i.e. H is consistent)

A hypothesis can be a single clause or multiple clauses. Often, a single clause is insufficient to describe a
target concept. For instance, to learn a definition of a recursive concept, the hypothesis needs to capture
at least the base and recursive case. The setup in which the hypothesis needs to capture at least two
dependent clauses is known as multi-clause learning (Muggleton et al., 2011).

Example 2. Consider the LFE tuple:

B =





lego_builder(alice).

lego_builder(bob).

estate_agent(claire).

estate_agent(dave).

enjoys_lego(alice).

enjoys_lego(claire).





E+ =
{
happy(alice).

}
E− =




happy(bob).

happy(claire).

happy(dave).




Also assume we have the hypothesis space:

H =





h1: happy(A):- lego_builder(A).

h2: happy(A):- estate_agent(A).

h3: happy(A):- likes_lego(A).

h4: happy(A):- lego_builder(A),estate_agent(A).

h5: happy(A):- lego_builder(A),enjoys_lego(A).

h6: happy(A):- estate_agent(A),enjoys_lego(A).





Then we can consider which hypotheses an ILP system should return:

• B ∪ h1 |= happy (bob) so is inconsistent
• B ∪ h2 6 |= happy (al i ce) so is incomplete
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• B ∪ h3 |= happy (cl ai r e) so is inconsistent
• B ∪ h4 6 |= happy (al i ce) so is incomplete
• B ∪ h5 is both complete and consistent
• B ∪ h6 6 |= happy (al i ce) so is incomplete

The LFE problem in Definition 2 is general. ILP systems impose strong restrictions on X, B, and H .
For instance, some restrict X to only contain atoms whereas others allow clauses. Some restrictH to
contain only Datalog clauses. We discuss these biases in Section 4.

According to Definition 2, a hypothesis must entail every positive example (be complete) and no
negative examples (be consistent). However, training examples are often noisy, so it is difficult to find a
hypothesis that is both complete and consistent. Therefore, most approaches relax this definition and try
to find a hypothesis that entails as many positive and as few negative examples as possible. Precisely
what this means depends on the system. For instance, the default cost function in Aleph (Srinivasan,
2001) is coverage, defined as the number of positive examples entailed subtracted by the number of
negative examples entailed by the hypothesis. Other systems also consider the size of a hypothesis,
typically the number of clauses or literals in it. We discuss noise handling in Section 5.1.

3.2 Learning From Interpretations

The secondmost popular (De Raedt & Dehaspe, 1997; Blockeel & De Raedt, 1998; Law et al., 2014) learning
setting is LFI where an example is an interpretation, i.e. a set of facts. The LFI problem is:

Definition 3 (Learning from interpretations). Given a tuple (B, E +
, E −) where:

• B ⊆B denotes background knowledge
• E + ⊆ X denotes positive examples of the concept, each example being a set of facts
• E − ⊆ X denotes negative examples of the concept, each example being a set of facts

The goal of LFI is to return a hypothesis H ∈ H such that:

• [e ∈ E +
, e is a model of H ∪ B

• [e ∈ E −, e is not a model of H ∪ B

When learning from interpretations, it is implicitly assumed that every example is completely specified.
That is, every atom in the interpretation has to be true or false, and there is no room for missing values.
As providing a complete interpretation might be unfeasible in many cases, many ILP systems focus on
partial interpretations (De Raedt, 1997).

Example 3. To illustrate LFI, we use the example from (De Raedt & Kersting, 2008a). Consider the BK:

B =

{
father(henry,bill). father(alan,betsy). father(alan,benny).

mother(beth,bill). mother(ann,betsy). mother(alice,benny).

}

and the examples:

E+ =




e1 =




carrier(alan).

carrier(ann).

carrier(betsy).




e2 =





carrier(benny).

carrier(alan).

carrier(alice).







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E− =

{
e3 =

{
carrier(henry).

carrier(beth).

} }

Also assume the hypothesis space:

H =

{
h1 = carrier(X):- mother(Y,X),carrier(Y),father(Z,X),carrier(Z).

h2 = carrier(X):- mother(Y,X),father(Z,X).

}

To solve the LFI problem (Definition 3), we need to find a hypothesis H such that e1 and e2 are models
of H ∪ B and e3 is not. That is, we need to find a hypothesis H that satisfies the following prop-
erty for every example ei ∈ E+: for every substitution θ such that body (h1)θ ⊆ B ∪ ei holds,
it also holds that head (h1)θ ⊆ B ∪ ei . e3 is not the model of h1 as there exists a substitution
θ = {X/bill, Y/beth, Z/henry} such that body holds but the head does not. For the same reason,
none of the examples is a model of h2.

We often say that a hypothesis covers an example. The meaning of a hypothesis covering an example
changes depending on the learning setup. In LFE, the hypothesis H covers an example if the example is
entailed by H ∪ B . In LFI, the hypothesis H covers an example if the example is a model of H ∪ B .

4. Building An ILP System

Building an ILP system requires making several choices or assumptions, which are part of the inductive
bias of a learner. An inductive bias is essential and all ML approaches impose an inductive bias (Mitchell,
1997). Understanding these assumptions is key to understanding ILP. The choices can be categorised as:

• Learning setting: how to represent examples
• Representation language: how to represent BK and hypotheses
• Language bias: how to define the hypothesis space
• Search method: how to search the hypothesis space

Table 3 shows the assumptions of some systems. This table excludes many important systems, including
interactive systems, such as Marvin (Sammut, 1981), MIS (Shapiro, 1983), DUCE (Muggleton, 1987), Cigol
(Muggleton & Buntine, 1988), and Clint (De Raedt & Bruynooghe, 1992), theory revision systems, such as
FORTE (Richards & Mooney, 1995), and probabilistic systems, such as SLIPCOVER (Bellodi & Riguzzi, 2015)
and ProbFOIL (De Raedt et al., 2015). Covering all systems is beyond the scope of this paper. We discuss
these differences/assumptions.

4.1 Learning Setting

The two main learning settings are LFE and LFI (Section 3). Within the LFE setting, there are further dis-
tinctions. Some systems, such as Progol (Muggleton, 1995), allow for clauses as examples. Most systems,
however, learn from sets of facts, so this dimension of comparison is not useful.

11. The original FOIL setting is more restricted than the table shows and can only have BK in the form of facts and does not
allow functions (De Raedt, 2008).

12. The FOIL paper does not discuss its language bias.
13. LFIT employs many implicit language biases.
14. The LFIT approach of Inoue et al. (2014) is bottom-up and the approach of Ribeiro and Inoue (2014) it top-down.
15. ∂ ILP uses rule templates which can be seen as a generalisation of metarules.
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System Setting Hypotheses BK Language Bias Search method

FOIL (Quinlan, 1990) LFE Definite Definite11 n/a12 TD

Progol (Muggleton, 1995) LFE Normal Normal Modes BU+TD

Claudien (De Raedt & Dehaspe, 1997) LFI Clausal Definite DLab TD

TILDE (Blockeel & De Raedt, 1998) LFI Logical trees Normal Modes TD

Aleph (Srinivasan, 2001) LFE Normal Normal Modes BU+TD

XHAIL (Ray, 2009) LFE Normal Normal Modes BU

ASPAL (Corapi et al., 2011) LFE Normal Normal Modes ML

Atom (Ahlgren & Yuen, 2013) LFE Normal Normal Modes BU+TD

QuickFOIL (Zeng et al., 2014) LFE Definite Facts Schema TD

LFIT (Inoue et al., 2014) LFT Normal None n/a13 BU+TD14

ILASPa (Law et al., 2014) LFIb ASP ASP Modes ML

Metagol (Muggleton et al., 2015) LFE Definite Normal Metarules ML

∂ ILP (Evans & Grefenstette, 2018) LFE Datalog Facts Metarules15 ML

HEXMIL (Kaminski et al., 2018) LFE Datalog Datalog Metarules ML

FastLAS (Law et al., 2020) LFI ASP ASP Modes ML

Apperception (Evans et al., 2021) LFT Datalog⊃− None Types ML

Popper (Cropper & Morel, 2021) LFE Definite Normal Declarations ML

Table 3: Assumptions of popular ILP systems. LFE stands for learn from entailment, LFI stands for learn-
ing from interpretations, LFT stands for learning from transitions. TD stands for top-down, BU
stands for bottom-up, and ML stands formeta-level. This table is meant to provide a very high-
level overview of the systems. Therefore, the table entries are coarse and should not be taken
absolutely literally. For instance, Progol, Aleph, and ILASP support other types of language bi-
ases, such as constraints on clauses. Popper also, for instance, supports ASP programs as BK,
but usually takes normal programs.

a. ILASP is a suite of ILP systems. For simplicity, we refer to all the systems as ILASP. However, some features, such as noise
handling, are not in the original ILASP paper.

b. ILASP learns from answer sets. However, to avoid having to introduce a problem setting for a single system, we have
classified it as learning from interpretations, which is the most similar setting. See the original ILASP paper for more
information (Law et al., 2014).

4.2 Hypotheses

Although some systems learn propositional programs, such as Duce (Muggleton, 1987), most learn first-
order (or higher-order) programs. For systems that learn first-order programs, there are classes of pro-
grams that they learn. Some systems induce full (unrestricted) clausal theories, such as Claudien (De
Raedt & Dehaspe, 1997) and CF-induction (Inoue, 2004). However, reasoning about full clausal theories
is computationally expensive, so most systems learn fragments of clausal logic, usually definite pro-
grams. Systems that focus on program synthesis (Shapiro, 1983; Bratko, 1999; Ahlgren & Yuen, 2013;
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Cropper & Muggleton, 2016, 2019; Cropper & Morel, 2021) tend to induce definite programs, typically as
Prolog programs.

4.2.1 Normal Programs

One motivation for learning normal programs (Section 2.3.1) is that many practical applications require
non-monotonic reasoning. Moreover, it is often simpler to express a concept with negation as failure
(NAF). For instance, consider the following problem by Ray (2009):

B =




bird(A):- penguin(A)

bird(alvin)

bird(betty)

bird(charlie)

penguin(doris)




E+ =




flies(alvin)

flies(betty)

flies(charlie)




E− =
{
flies(doris)

}

Without NAF it is difficult to induce a general hypothesis for this problem. By contrast, with NAF a system
could learn the hypothesis:

H =
{
flies(A):- bird(A), not penguin(A)

}

ILP approaches that learn normal logic programs can further be characterised by their semantics, such
as whether they are based on completion (Clark, 1977), well-founded (Gelder et al., 1991), or stable model
(answer set) (Gelfond & Lifschitz, 1988) semantics. Discussing the differences between these semantics
is beyond the scope of this paper.

4.2.2 Answer Set Programs

There are many benefits to learning ASP programs (Otero, 2001; Law et al., 2014). When learning Prolog
programs with NAF, the programs must be stratified; otherwise, the learned program may loop under
certain queries (Law et al., 2018). By contrast, some systems can learn unstratified ASP programs (Law
et al., 2014). In addition, ASP programs support rules that are not available in Prolog, such as choice rules
and weak and hard constraints. For instance, ILASP (Law et al., 2014), can learn the following definition
of a Hamiltonian graph (taken from Law et al. (2020)) as an ASP program:

0{in(V0, V1)}1 :- edge(V0, V1).

reach(V0):- in(1, V0).

reach(V1):- reach(V0), in(V0, V1).

:- not reach(V0), node(V0).

:- V1 != V2, in(V0, V2), in(V0, V1).

This program illustrates useful language features of ASP. The first rule is a choice rule, which means that
an atom can be true. In this example, the rule indicates that there can be an in edge from the vertex V1 to
V0. The last two rules are hard constraints, which essentially enforce integrity constraints. The first hard
constraint states that it is impossible to have a node that is not reachable. The second hard constraint
states that it is impossible to have a vertex with two in edges from distinct nodes. For more information
about ASP we recommend the book by Gebser et al. (2012).
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Approaches to learning ASP programs can be divided into two categories: brave learners, which aim
to learn a program such that at least one answer set covers the examples, and cautious learners, which
aim to find a program which covers the examples in all answer sets. We refer to existing work of Otero
(2001), Sakama and Inoue (2009, 2009), Law et al. (2018) for more information about these different
approaches.

4.2.3 Higher-order Programs

As many programmers know, there are benefits to using higher-order representations. For instance,
suppose you have some encrypted/decrypted strings represented as Prolog facts:

E+ =




decrypt([d,b,u],[c,a,t])

decrypt([e,p,h],[d,o,g])

decrypt([h,p,p,t,f],[g,o,o,s,e])




Given these examples and suitable BK, a system could learn the first-order program:

H =




decrypt(A,B):- empty(A),empty(B).

decrypt(A,B):- head(A,C),chartoint(C,D),prec(D,E),inttochar(E,F),

head(B,F),tail(A,G),tail(B,H),decrypt(G,H).




This program defines a Caesar cypher which shifts each character back once (e.g. z ↦→ y, y ↦→ x, etc).
Although correct (ignoring the modulo operation for simplicity), this program is long and difficult to read.
To overcome this limitation, some systems (Cropper et al., 2020) learn higher-order programs, such as:

H =

{
decrypt(A,B):- map(A,B,inv)

inv(A,B):- char_to_int(A,C),prec(C,D),int_to_char(D,B)

}

This program is higher-order because it allows literals to take predicate symbols as arguments. The
symbol inv is invented (we discuss predicate invention in Section 5.5) and is used as an argument for map
in the first rule and as a predicate symbol in the second rule. The higher-order program is smaller than
the first-order program because the higher-order background relation map abstracts away the need to
learn a recursive program. Cropper et al. (2020) show that inducing higher-order programs can drastically
improve learning performance in terms of predictive accuracy, sample complexity, and learning times.

4.3 Background Knowledge

BK is similar to features used in other forms of ML. However, whereas features are finite tables, BK is
a logic program. Using logic programs to represent data allows ILP to learn with complex relational
information. For instance, suppose we want to learn list or string transformation programs, we might
want to supply helper relations, such as head, tail, and last as BK:

B =





head([H|_],H).

tail([_|T],T).

last([H],H).

last([_|T1],A):- tail(T1,T2),last(T2,A).





20



Inductive Logic Programming At 30: A New Introduction

These relations hold for lists of any length and any type.
As a second example, suppose you want to learn the definition of a prime number. Then you might

want to give a system the ability to perform arithmetic reasoning, such as using the Prolog relations:

B =




even(A):- 0 is mod(A,2).

odd(A):- 1 is mod(A,2).

sum(A,B,C):- C is A+B.

gt(A,B):- A>B.

lt(A,B):- A<B.




These relations are general and hold for arbitrary numbers and we do not need to pre-compute all the
logical consequences of the definitions, which is impossible because there are infinitely many. By con-
trast, table-basedML approaches are restricted to finite propositional data. For instance, it is impossible
to use the greater than relation over the set of natural numbers in a decision tree learnerbecause it would
require an infinite feature table.

4.3.1 Constraints

BK allows a human to encode prior knowledge of a problem. As a trivial example, if learning banking
rules to determine whether two companies can lend to each other, you may encode a prior constraint to
prevent two companies from lending to each other if they are owned by the same parent company:

:- lend(A,B), parent_company(A,C), parent_company(B,C).

Constraints are widely used in ILP (Zeng et al., 2014; Evans, 2020; Cropper & Morel, 2021). For instance,
Inoue et al. (2013) represent knowledge as a causal graph and use constraints to denote impossible
connections between nodes. Evans et al. (2021) use constraints to induce theories to explain sensory
sequences. For instance, one requirement of their unity condition is that objects (constants) are con-
nected via chains of binary relations. The authors argue that such constraints are necessary for the
induced solutions to achieve good predictive accuracy.

4.3.2 Discussion

As with choosing appropriate features, choosing appropriate BK in ILP is crucial for good learning per-
formance. ILP has traditionally relied on predefined and hand-crafted BK, often designed by domain
experts. However, it is often difficult and expensive to obtain such BK. Indeed, the over-reliance on
hand-crafted BK is a common criticism of ILP (Evans & Grefenstette, 2018). The difficulty is finding the
balance of having enough BK to solve a problem, but not too much that a system becomes overwhelmed.
We discuss these two issues.

Too little BK. If we use too little or insufficient BK then we may exclude a good hypothesis from the
hypothesis space. For instance, reconsider the string transformation problem from the introduction,
where we want to learn a program that returns the last character of a string from examples.

E+ =




last([m,a,c,h,i,n,e], e)

last([l,e,a,r,n,i,n,g],g)

last([a,l,g,o,r,i,t,m], m)



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To induce a hypothesis from these examples, we need to provide an ILP system with suitable BK. For
instance, we might provide BK that contains relations for common list/string operations, such as empty,
head, and tail. Given these three relations, an ILP system could learn the program:

H =

{
last(A,B):- tail(A,C),empty(C),head(A,B).

last(A,B):- tail(A,C),last(C,B).

}

However, suppose that the user had not provided tail as BK. Then how could a system learn the above
hypothesis? This situation is a major problem, as most systems can only use BK provided by a user. To
mitigate this issue, there is research on enabling a system to automatically invent new predicate symbols,
known as predicate invention, which we discuss in Section 5.5, which has been shown to mitigate missing
BK (Cropper &Muggleton, 2015). However, ILP still heavily relies onmuch human input to solve a problem.
Addressing this limitation is a major challenge.

Too much BK. As with too little BK, a major challenge is too much irrelevant BK. Too many relations
(assuming that they can appear in a hypothesis) is often a problem because the size of the hypothesis
space is a function of the size of the BK. Empirically, too much irrelevant BK is detrimental to learning
performance (Srinivasan et al., 1995, 2003; Cropper, 2020), this also includes irrelevant language biases
(Cropper & Tourret, 2020). Addressing the problemof toomuch BKhas been under-researched. In Section
9, we suggest that this topic is a promising direction for future work, especially when considering the
potential for ILP to be used for lifelong learning (Section 5.5.4).

4.4 Language Bias

The fundamental ILP problem is to search the hypothesis space for a suitable hypothesis. The hypothe-
sis space contains all possible programs that can be built in the chosen representation language. Unre-
stricted, the hypothesis space is infinite, so it is important to restrict it to make the search feasible. To
restrict the hypothesis space, systems enforce an inductive bias (Mitchell, 1997). A language bias enforces
restrictions on hypotheses, such as restricting the number of variables, literals, and rules in a hypoth-
esis. These restrictions can be categorised as either syntactic bias, restrictions on the form of a rule in
a hypothesis, and semantic bias, restrictions on the behaviour of induced hypotheses (Adé et al., 1995).
For instance, in the happy example (Example 1.1), we assumed that a hypothesis only contains predicate
symbols that appear in the BK or examples. However, we need to encode this bias to give an ILP system.
There are several ways of encoding a language bias, such as grammars (Cohen, 1994a), Dlabs (De Raedt
& Dehaspe, 1997), production fields (Inoue, 2004), and predicate declarations (Cropper & Morel, 2021).
We focus on mode declarations (Muggleton, 1995) andmetarules (Cropper & Tourret, 2020), two popular
language biases.

4.4.1 Mode Declarations

Mode declarations are the most popular form of language bias (Muggleton, 1995; Blockeel & De Raedt,
1998; Srinivasan, 2001; Ray, 2009; Corapi et al., 2010, 2011; Athakravi et al., 2013; Ahlgren & Yuen, 2013;
Law et al., 2014; Katzouris et al., 2015). Mode declarations state which predicate symbols may appear in a
rule, how often, and also their argument types. In the mode language,modeh declarations denote which
literals may appear in the head of a rule and modeb declarations denote which literals may appear in
the body of a rule. A mode declaration is of the form:

mode (r ecal l , pr ed (m1,m2, . . . ,ma ))
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The following are all valid mode declarations:

modeh(1,happy(+person)).

modeb(*,member(+list,-element)).

modeb(1,head(+list,-element)).

modeb(2,parent(+person,-person)).

The first argument of amode declaration is an integer denoting the recall. Recall is themaximum number
of times that a mode declaration can be used in a rule16. Another way of understanding recall is that it
bounds the number of alternative solutions for a literal. Providing a recall is a hint to a system to ignore
certain hypotheses. For instance, if using the parent kinship relation, then we can set the recall to two,
as a person has at most two parents. If using the grandparent relation, then we can set the recall to four,
as a person has at most four grandparents. If we know that a relation is functional, such as head, then
we can bound the recall to one. The symbol * denotes no bound.

The second argument denotes that the predicate symbol that may appear in the head (modeh) or
body (modeb) of a rule and the type of arguments it takes. The symbols +, −, and # denote whether
the arguments are input, output, or ground arguments respectively. An input argument specifies that,
at the time of calling the literal, the corresponding argument must be instantiated. In other words, the
argument needs to be bound to a variable that already appears in the rule. An output argument specifies
that the argument should be bound after calling the corresponding literal. A ground argument specifies
that the argument should be ground and is often used to learn rules with constant symbols in them.

To illustrate mode declarations, consider the modes:

modeh(1,target(+list,-char)).

modeb(*,head(+list,-char)).

modeb(*,tail(+list,-list)).

modeb(1,member(+list,-list)).

modeb(1,equal(+char,-char)).

modeb(*,empty(+list)).

Given these modes, the rule target(A,B):- head(A,C),tail(C,B) is mode inconsistent because
modeh(1,target(+list,-char)) requires that the second argument of target (B) is char and the
mode modeb(*,tail(+list,-list)) requires that the second argument of tail (B) is a list, so this
rule is mode inconsistent. The rule target(A,B):- empty(A),head(C,B) is also mode inconsistent
because modeb(*,head(+list,-char)) requires that the first argument of head (C) is instantiated
but the variable C is never instantiated in the rule.

By contrast, the following rules are all mode consistent:

target(A,B):- tail(A,C),head(C,B).

target(A,B):- tail(A,C),tail(C,D),equal(C,D),head(A,B).

target(A,B):- tail(A,C),member(C,B).

Depending on the specific system, modes can also support the introduction of constant symbols. In
Aleph, an example of such a declaration is modeb(*,length(+list,#int)), which would allow integer
values to be included in rules.

16. The recall of a modeh declaration is almost always useless and is often set to 1.
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Different systems use mode declarations in slightly different ways. Progol and Aleph use mode dec-
larations with input/output argument types because they induce Prolog programs, where the order of
literals in a rule matters. By contrast, ILASP induces ASP programs, where the order of literals in a rule
does not matter, so ILASP does not use input/output arguments.

4.4.2 Metarules

Metarules17 are a popular form of syntactic bias and are used by many systems (De Raedt & Bruynooghe,
1992; Flener, 1996; Kietz & Wrobel, 1992; Wang et al., 2014; Muggleton et al., 2015; Cropper & Muggleton,
2016; Kaminski et al., 2018; Evans & Grefenstette, 2018; Bain & Srinivasan, 2018). Metarules are second-
order rules which define the structure of learnable programs which in turn defines the hypothesis space.
For instance, to learn the grandparent relation given the parent relation, the chain metarule would
be suitable:

P(A,B):- Q(A,C), R(C,B).

The letters P , Q , and R denote second-order variables (variables that can be bound to predicate sym-
bols) and the letters A, B and C denote first-order variables (variables that can be bound to constant
symbols). Given the chainmetarule, the background parent relation, and examples of the grandparent
relation, ILP approaches will try to find suitable substitutions for the second-order variables, such as the
substitutions {P/grandparent, Q/parent, R/parent} to induce the theory:

grandparent(A,B):- parent(A,C),parent(C,B).

Despite their widespread use, there is little work determining which metarules to use for a given learning
task. Instead, these approaches assume suitable metarules as input or use metarules without any the-
oretical guarantees. In contrast to other forms of bias in ILP, such as modes or grammars, metarules are
themselves logical statements, which allows us to reason about them. For this reason, there is prelimi-
nary work in reasoning about metarules to identify universal sets suitable to learn certain fragments of
logic programs (Cropper & Muggleton, 2014; Tourret & Cropper, 2019; Cropper & Tourret, 2020). Despite
this preliminary work, deciding which metarules to use for a given problem is still a major challenge,
which future work must address.

4.4.3 Discussion

Choosing an appropriate language bias is essential to make an ILP problem tractable because it defines
the hypothesis space. If the bias is too weak, then the search can become intractable. If the bias is too
strong then we risk excluding a good solution from the hypothesis space. This trade-off is one of the ma-
jor problems holding ILP back from being widely used18. To understand the impact of an inappropriate

17. Metarules were introduced as clause schemata by Emde et al. (1983) and were notably used in Mobal system (Kietz &
Wrobel, 1992). Metarules are also called second-order schemata (De Raedt & Bruynooghe, 1992) and program schemata
(Flener, 1996), amongst many other names.

18. The Blumer bound (Blumer et al., 1987) (the bound is a reformulation of Lemma 2.1) helps explain this trade-off. This bound
states that given two hypothesis spaces, searching the smaller space will result in fewer errors compared to the larger
space, assuming that the target hypothesis is in both spaces. Here lies the problem: how to choose a learner’s hypothesis
space so that it is large enough to contain the target hypothesis yet small enough to be efficiently searched. To know more
about this aspect of ILP, we first recommend Chapter 7 of Mitchell’s (1997) Machine Learning book, which is, in our view,
still the best introductory exposition of computational learning theory, and then work specific to ILP (Cohen, 1995b, 1995d,
1995c; Gottlob et al., 1997).
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language bias, consider the string transformation example in Section 1.2. Even if all necessary back-
ground relations are provided, not providing a recursive metarule (e.g. R(A,B):- P(A,C), R(C,B))
would prevent a metarule-based system from inducing a program that generalises to lists of any length.
Similarly, not providing a recursive mode declaration for the target relation would prevent amode-based
system from finding a good hypothesis.

Different language biases offer different benefits. Mode declarations are expressive enough to en-
force a strong bias to significantly prune the hypothesis space. They are especially appropriate when a
user has much knowledge about their data and can, for instance, determine suitable recall values. If a
user does not have such knowledge, then it can be very difficult to determine suitablemode declarations.
Moreover, if a user provides weak mode declarations (for instance with infinite recall, a single type, and
no input/output arguments), then the search quickly becomes intractable. Although there is some work
on learning mode declarations (McCreath & Sharma, 1995; Ferilli et al., 2004; Picado et al., 2017), it is still
a major challenge to choose appropriate ones.

A benefit of metarules is that they require little knowledge of the BK and a user does not need to
provide recall values, types, or specify input/output arguments. Because they precisely define the form
of hypotheses, they can greatly reduce the hypothesis space, especially if the user knows about the
class of programs to be learned. However, as previously mentioned, the major downside with metarules
is determining which metarules to use for an arbitrary learning task. Although there is some preliminary
work in identifying universal sets of metarules (Cropper & Muggleton, 2014; Tourret & Cropper, 2019;
Cropper & Tourret, 2020), deciding which metarules to use for a given problem is a major challenge,
which future work must address.

4.5 Search Method

Having defined the hypothesis space, the next problem is to efficiently search it. There are two traditional
search methods: bottom-up and top-down. These methods rely on notions of generality, where one
program is more general or more specific than another (Section 2.4). A generality relation imposes an
order over the hypothesis space. Figure 2 shows this order using theta-subsumption, the most popular
ordering relation. A system can exploit this ordering during the search for a hypothesis. For instance, if
a clause does not entail a positive example, then there is no need to explore any of its specialisations
because it is logically impossible for them to entail the example. Likewise, if a clause entails a negative
example, then there is no need to explore any of its generalisations because they will also entail the
example.

The above paragraph refers only to generality orders on single clauses, as many systems employ the
covering algorithm whereby hypotheses are constructed iteratively clause by clause (Quinlan, 1990; De
Raedt & Dehaspe, 1997; Muggleton, 1995; Blockeel & De Raedt, 1998; Srinivasan, 2001). However, some
systems (Shapiro, 1983; Bratko, 1999; Cropper & Morel, 2021) induce theories formed of multiple clauses
and thus require generality orders over clausal theories. We refer an interested reader to Chapter 7 in
the work of De Raedt (2008) for more information about inducing theories.

4.5.1 Top-down

Top-down algorithms, (Quinlan, 1990; Blockeel & De Raedt, 1998; Bratko, 1999; Muggleton et al., 2008)
start with a general hypothesis and then specialise it. For instance, HYPER (Bratko, 1999) searches a tree
in which the nodes correspond to hypotheses. Each child of a hypothesis in the tree is more specific
than or equal to its predecessor in terms of theta-subsumption, i.e. a hypothesis can only entail a subset
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Modes
modeh(1, son(+,-)).

modeb(1, male(+)).

modeb(1, parent(-,+)).

modeb(1, parent(#,+)).

modeb(1, father(-,+)).
son(X,Y):-

male(Y).

son(X,Y):-

father(Y,X).

son(X,Y):-

parent(Y,X).

son(X,Y).

...
son(X,Y):-

parent(Y,X),

male(X).

son(X,Y):-

father(Y,X),

male(Y).

son(X,Y):-

father(Y,X),

male(X).

son(X,Y):-

parent(Y,X),

male(Y).

son(X,Y):-

parent(Y,X),

father(Y,X).

son(X,Y):-

parent(claire,X),

parent(Y,X).

...

son(X,Y):-

parent(Y,X),

father(Y,X),

male(Y).

son(X,Y):-

parent(claire,X),

parent(Y,X),

male(Y),

son(X,Y):-

parent(claire,X),

parent(Y,X),

male(X),

son(X,Y):-

parent(claire,X),

father(Y,X).

son(X,Y):-

parent(Y,X),

father(Y,X),

male(X).

...

son(X,Y):-

parent(claire,X),

father(Y,X),

male(X).

son(X,Y):-

parent(claire,X),

father(Y,X),

male(Y).

...

son(X,Y):-

parent(Y,X),

father(Y,X),

male(X),

parent(claire,X).

son(X,Y):-

parent(Y,X),

father(Y,X),

male(Y),

parent(claire,X),

Figure 2: The generality relation orders the hypothesis space into a lattice (an arrow connects a hypoth-
esis with its specialisation). The hypothesis space is built from the modes and only shown
partially (# indicates that a constant needs to be used as an argument; only claire is used
as a constant here). The most general hypothesis sits on the top of the lattice, while the most
specific hypotheses are at the bottom. The top-down lattice traversal starts at the top, with
the most general hypothesis, and specialises it moving downwards through the lattice. The
bottom-up traversal starts at the bottom, with the most specific hypothesis, and generalises it
moving upwards through the lattice.

of the examples entailed by its parent. The construction of hypotheses is based on hypothesis refine-
ment (Shapiro, 1983; Nienhuys-Cheng & Wolf, 1997). If a hypothesis is considered that does not entail
all the positive examples, it is immediately discarded because it can never be refined into a complete
hypothesis.

4.5.2 Bottom-up

Bottom-up algorithms start with the examples and generalise them (Muggleton, 1987; Muggleton & Bun-
tine, 1988; Muggleton & Feng, 1990; Muggleton et al., 2009; Inoue et al., 2014). For instance, Golem
(Muggleton & Feng, 1990) generalises pairs of examples based on relative least-general generalisation
(RLGG) (Buntine, 1988). To introduce RLGG, we start by introducing Plotkin’s (1971) notion of least-general
generalisation (LGG), which tells us how to generalise two clauses. Given two clauses, the LGG operator
returns the most specific single clause that is more general than both of them.
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Figure 3: Bongard problems

To define the LGG of two clauses, we start with the LGG of terms:

• lgg(f(s1,. . .,sn), f(t1,. . .,tm)) = f(lgg(s1,t1),. . . ,lgg(sn,tn)).
• lgg(f(s1,. . .,sn), g(t1,. . .,tm)) = V (a variable),
• lgg(f(s1,. . .,sn), V) = V′ (a new variable).

Note that a constant is a functor with zero arguments, and thus the above rules apply. We define the LGG
of literals:

• lgg(p(s1,. . .,sn), p(t1,. . .,tn)) = p(lgg(s1,t1),. . . ,lgg(sn,tn)).
• lgg(¬p(s1,. . .,sn), ¬p(t1,. . .,tn)) = ¬p(lgg(s1,t1),. . . ,lgg(sn,tn))
• lgg(p(s1,. . .,sn), q(t1,. . .,tn)) is undefined
• lgg(p(s1,. . .,sn), ¬p(t1,. . .,tn)) is undefined
• lgg(¬p(s1,. . .,sn), p(t1,. . .,tn)) is undefined.

Using the set representation of a clause, we define the LGG of two clauses:

lgg(cl1,cl2) = { lgg(l1,l2) for l1 ∈ cl1 and l2 ∈ cl2, such that lgg(l1,l2) is defined }

In other words, the LGG of two clauses is a LGG of all pairs of literals of the two clauses.
Having defined the notion of LGG, we move to defining RLGG. Buntine’s (1988) notion of relative least-

general generalisation computes a LGG of two examples relative to the BK (assumed to be a set of facts):

rlgg(e1,e2) = lgg(e1 :- BK, e2 :- BK).

Example 4. To illustrate RLGG, consider the Bongard problems in Figure 3 where the goal is to spot the
common factor in both images. Assume that the images are described with the BK:

B =




triangle(o1).

triangle(o3).

circle(o2).

points(o1,down).

points(o3,down).

contains(1,o1).

contains(1,o2).

contains(2,o3).




That is, the BK states that objects o1 and o3 are triangles, object o2 is a circle, objects o1 and o2 point
down, image 1 contains objects o1 and o2, while image 2 contains object 3. We can use RLGG to identify
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the common factor, i.e., to find a program representing the common factor. We will denote the example
images as bon(1) and bon(2). We start by formulating the clauses describing examples relative to BK
and removing irrelevant parts of BK:

lgg( (
bon(1) :- contains(1,o1), contains(1,o2), triangle(o1), points(o1,down),

circle(o2) , contains(2,o3), triangle(o3), points(o3,down).
)
,(

bon(2) :- contains(1,o1), contains(1,o2), triangle(o1), points(o1,down),

circle(o2), contains(2,o3), triangle(o3), points(o3,down).
)

)

We proceed by computing LGG for the heads and the bodies of the two clauses separately19. The LGG of
the head literals is lgg(bon(1),bon(2)) = bon(lgg(1,2)) = bon(X). An important thing to note here
is that we have to use the same variable for the same ordered pair of terms everywhere. For instance, we
have used the variable X for lgg(1,2) and we have to use the same variable every time we encounter
the same pair of terms. To compute the LGG of the body literals, we compute the LGG for all pairs of body
literals:

{
lgg(contains(1,o1),contains(2,o3)), lgg(contains(1,o1),triangle(o3)), lgg(contains(1,o1),points(o3,down))

lgg(contains(1,o2),contains(2,o3)), lgg(contains(1,o2),triangle(o3)), lgg(contains(1,o1),points(o3,down)),

lgg(triangle(o1),contains(2,o3)), lgg(triangle(o1),triangle(o3)), lgg(triangle(o1),points(o3,down)),

lgg(points(o1,down),contains(2,03)), lgg(points(o1,down),triangle(o3)), lgg(points(o1,down),points(o3,down)),

lgg(circle(o2),contains(2,o3)), lgg(circle(o2),triangle(o3)), lgg(circle(o2),points(o3,down))
}
.

Eliminating undefined LGGs leaves us with:
{
lgg(contains(1,o1),contains(2,o3)), lgg(contains(1,o2),contains(2,o3)),

lgg(triangle(o1),triangle(o3)), lgg(points(o1,down),points(o3,down))
}
.

Finally, computing the individual LGGs20

{
contains(X,Y), contains(X,Z), triangle(Y), points(Y,down)

}
.

and eliminating the redundant literal contains(X,Z) (as it is subsumed by contains(X,Y)) gives us
the clause:

bon(X):- contains(X,Y),triangle(Y),points(Y,down).

We suggest the book by De Raedt (2008) for more information about generality orders.

4.5.3 Top-down And Bottom-up

Progol is one of the most important systems and has inspired many other approaches (Srinivasan, 2001;
Ray, 2009; Ahlgren & Yuen, 2013), including Aleph, which we cover in detail in Section 6.1. Progol is,
however, slightly confusing because it is a top-down system but it first uses a bottom-up approach to
bound the search space. Indeed, many authors only consider it a top-down approach. Progol uses a
set covering algorithm. Starting with an empty program, Progol picks an uncovered positive example to
generalise. To generalise an example, Progol uses mode declarations (Section 4.4.1) to build the bottom
clause (Muggleton, 1995), the logically most-specific clause that explains the example. The use of a
bottom clause bounds the search from above (the empty set) and below (the bottom clause). In this way,
Progol is a bottom-up approach because it starts with a bottom clause and tries to generalise it. However,

19. We can do this becausewhen a clause is converted to the set representation, the literals in the body and head have different
signs (body literals are negative, while the head literals are positive) which results in an undefined LGG.

20. with the following LGGs on terms: lgg(1,2) = X, lgg(o1,o3) = Y, lgg(o2,o3) = Z
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to find a generalisation of the bottom clause, Progol uses an A* algorithm to search for a generalisation
in a top-down (general-to-specific) manner and uses the other examples to guide the search21. In this
way, Progol is a top-down approach. When the search for a generalisation of the bottom clause has
finished, Progol adds the clause to its hypothesis (and thus makes it more general) and removes any
positive examples entailed by the new hypothesis. It repeats this process until there are nomore positive
examples uncovered. In Section 6.1, we discuss this approach in more detail when we describe Aleph
(Srinivasan, 2001), a system similar to Progol.

4.5.4 Meta-level

A third new approach has recently emerged called meta-level ILP (Inoue et al., 2013; Muggleton et al.,
2015; Inoue, 2016; Law et al., 2020; Cropper & Morel, 2021). There is no agreed-upon definition for what
meta-level ILP means, but most approaches encode the ILP problem as a meta-level logic program, i.e. a
program that reasons about programs. Such meta-level approaches often delegate the search for a
hypothesis to an off-the-shelf solver (Corapi et al., 2011; Athakravi et al., 2013; Muggleton et al., 2014;
Law et al., 2014; Kaminski et al., 2018; Evans et al., 2021; Cropper & Dumančić, 2020; Cropper & Morel,
2021) after which the meta-level solution is translated back to a standard solution for the ILP problem.
In other words, instead of writing a procedure to search in a top-down or bottom-up manner, meta-
level approaches formulate the learning problem as a declarative problem, often as an ASP problem
(Corapi et al., 2011; Athakravi et al., 2013; Muggleton et al., 2014; Law et al., 2014; Kaminski et al., 2018;
Evans et al., 2021; Cropper & Dumančić, 2020; Cropper & Morel, 2021). For instance, ASPAL (Corapi et al.,
2011) translates an ILP problem into a meta-level ASP program which describes every example and every
possible rule in the hypothesis space (defined by mode declarations). ASPAL then uses an ASP system
to find a subset of the rules that cover all the positive but none of the negative examples. In other
words, ASPAL delegates the search to an ASP solver. ASPAL uses an ASP optimisation statement to find
the hypothesis with the fewest literals.

Meta-level approaches can often learn optimal and recursive programs. Moreover, meta-level ap-
proaches use diverse techniques and technologies. For instance, Metagol (Muggleton et al., 2015; Cropper
& Muggleton, 2016) uses a Prolog meta-interpreter to search for a proof of a meta-level Prolog program.
ASPAL (Corapi et al., 2011), ILASP (Law et al., 2014), HEXMIL (Kaminski et al., 2018), and the Apperception
Engine (Evans et al., 2021) translate an ILP problem into an ASP problem and use powerful ASP solvers to
find a model of the problem – note that these systems all employ very different algorithms. ∂ ILP (Evans
& Grefenstette, 2018) uses neural networks to solve the problem. Overall, the development of meta-level
ILP approaches is exciting because it has diversified ILP from the standard clause refinement approach
of earlier systems.

For more information about meta-level reasoning, we suggest the work of Inoue (2016), who provides
an introduction to meta-level reasoning and learning. Law et al. (2020) also provide an overview of
conflict-driven ILP, which the systems ILASP3 (Law, 2018) and Popper (Cropper & Morel, 2021) adopt.

4.5.5 Discussion

The different search methods discussed above have different advantages and disadvantages, and there
is no ‘best’ approach. Moreover, as Progol illustrates, there is not necessarily clear distinctions between

21. The A* search strategy employed by Progol can easily be replaced by alternative search algorithms, such as stochastic
search (Muggleton & Tamaddoni-Nezhad, 2008).
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top-down, bottom-up, and meta-level approaches. We can, however, make some general observations
about the different approaches.

Bottom-up approaches can be seen as being data- or example-driven. The major advantage of these
approaches is that they are typically very fast. However, as Bratko (1999) points out, there are several
disadvantages of bottom-up approaches, such as (i) they typically use unnecessarily long hypotheses
with many clauses, (ii) it is difficult for them to learn recursive hypotheses and multiple predicates si-
multaneously, and (iii) they do not easily support predicate invention.

Themain advantages of top-down approaches are that they canmore easily learn recursive programs
and textually minimal programs. The major disadvantage is that they can be prohibitively inefficient be-
cause they can generate many hypotheses that do not cover even a single positive example. Another
disadvantage of top-down approaches is their reliance on iterative improvements. For instance, TILDE
keeps specialising every clause which leads to improvement (i.e., a clause covers fewer negative exam-
ples). As such, TILDE can get stuck with suboptimal solutions if the necessary clauses are very long and
intermediate specialisations do not improve the score (coverage) of the clause. To avoid this issue, these
systems rely on lookahead (Struyf et al., 2006) which increases the complexity of learning.

The main advantage of meta-level approaches is that they can learn recursive programs and optimal
programs (Corapi et al., 2011; Law et al., 2014; Kaminski et al., 2018; Evans& Grefenstette, 2018; Evans et al.,
2021; Cropper & Morel, 2021). They can also harness the state-of-the-art techniques in constraint solving,
notably in ASP. However, some unresolved issues remain. A key issue is that many approaches encode
an ILP problem as a single (often very large) ASP problem (Corapi et al., 2011; Law et al., 2014; Kaminski
et al., 2018; Evans et al., 2021), so struggle to scale to problems with very large domains. Moreover, since
most ASP solvers only work on ground programs (Gebser et al., 2014), pure ASP-based approaches are
inherently restricted to tasks that have a small and finite grounding. Although preliminary work attempts
to tackle this issue (Cropper & Morel, 2021; Cropper, 2022), work is still needed for these approaches to
scale to very large problems. Many approaches also precompute every possible rule in a hypothesis
(Corapi et al., 2011; Law et al., 2014), so struggle to learn programs with large rules, although preliminary
work tries to address this issue (Cropper & Dumančić, 2020).

5. ILP Features

Table 4 compares the same systems from Table 3 on a small number of dimensions. This table excludes
many other important dimensions of comparison, such as whether a system supports non-observational
predicate learning, where examples of the target relations are not directly given (Muggleton, 1995). We
discuss these features in turn.

5.1 Noise

Noise handling is important in ML. In ILP, we can distinguish between three types of noise:

• Noisy examples: where an example is misclassified

23. A logical decision tree learned by TILDE can be translated into a logic program that contains invented predicate symbols.
However, TILDE is unable to reuse any invented symbols whilst learning.

24. LFIT does not support recursion in the rules but allows recursion in their usage. The input is a set of pairs of interpretations
and the output is a logic program that can be recursively applied on its output to produce sequences of interpretations.

25. ILASP precomputes every rule defined by a given mode declarationM to form a rule space SM . Given background knowl-
edge B and an example E , ILASP requires that the grounding of B ∪ SM ∪ E must be finite.

26. Given background knowledge B and an example E , FastLAS requires that the grounding of B ∪ SM ∪ E must be finite.

30



Inductive Logic Programming At 30: A New Introduction

System Noise Optimality Infinite domains Recursion Predicate invention

FOIL (Quinlan, 1990) Yes No Yes Partly No

Progol (Muggleton, 1995) Yes No Yes Partly No

Claudien (De Raedt & Dehaspe, 1997) Yes No Yes Party No

TILDE (Blockeel & De Raedt, 1998) Yes No Yes No No22

Aleph (Srinivasan, 2001) Yes No Yes Partly No

XHAIL (Ray, 2009) Yes No Yes Partly No

ASPAL (Corapi et al., 2011) No Yes No Yes No

Atom (Ahlgren & Yuen, 2013) Yes No Yes Partly No

QuickFOIL (Zeng et al., 2014) Yes No No Partly No

LFIT (Inoue et al., 2014) No Yes No No23 No

ILASP (Law et al., 2014) Yes24 Yes Partly25 Yes Partly

Metagol (Muggleton et al., 2015) No Yes Yes Yes Yes

∂ ILP (Evans & Grefenstette, 2018) Yes Yes No Yes Partly

HEXMIL (Kaminski et al., 2018) No Yes No Yes Yes

FastLAS (Law et al., 2020) Yes Yes Partly26 No No

Apperception (Evans et al., 2021) Yes Yes No Yes Partly

Popper (Cropper & Morel, 2021) Yes Yes Yes Yes Yes

Table 4: A vastly simplified comparison of ILP systems. As with Table 3, this table is meant to provide a
very high-level overview of some systems. Therefore, the table entries are coarse and should
not be taken absolutely literally. For instance, Metagol does not support noise and thus has the
value no in the noise column, but there is an extension (Muggleton et al., 2018) that samples
examples to mitigate the issue of misclassified examples. ILASP and ∂ ILP support predicate
invention, but only a restricted form. See Section 5.5 for an explanation. FOIL, Progol, and XHAIL
can learn recursive programswhen given sufficient examples. See Section 5.4 for an explanation.

• Incorrect BK: where a relation holds when it should not (or does not hold when it should)
• Imperfect BK: where relations are missing or there are too many irrelevant relations

We discuss these three types of noise.

Noisy examples. The problem definitions from Section 3 are too strong to account for noisy (incorrectly
labelled) examples because they expect a hypothesis that entails all of the positive and none of the
negative examples. Therefore, most systems relax this constraint and accept a hypothesis that does not
necessarily cover all positive examples or that covers some negative examples27. Most systems that use
a set covering loop naturally support noise handling. For instance, TILDE extends a decision tree learner
(Quinlan, 1986, 1993) to the first-order setting and uses the same information gain methods to induce
hypotheses. The noise-tolerant version of ILASP (Law, 2018) uses ASP’s optimisation abilities to provably

27. It is, unfortunately, a common misconception that ILP cannot handle mislabelled examples (Evans & Grefenstette, 2018).
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learn the program with the best coverage. In general, handling noisy examples is a well-studied topic in
ILP.

Noisy BK. Just as training examples can potentially be noisy/misclassified, the facts/rules in the BK can
be noisy/misclassified. For instance, if learning rules to forecast the weather, the BK might include facts
about historical weather, which might not be 100% correct. However, most systems assume that the BK
is perfect, i.e. that atoms are true or false, and there is no room for uncertainty. This assumption is a
major limitation because real-world data, such as images or speech, cannot always be easily translated
into a purely noise-free symbolic representation. We discuss this limitation in more detail in Section 9.1.
One of the key appealing features of ∂ ILP is that it takes a differentiable approach to ILP and can be
given fuzzy or ambiguous data. Rather than an atom being true or false, ∂ ILP gives atoms continuous
semantics, which maps atoms to the real unit interval [0, 1]. The authors successfully demonstrate the
approach on the MNIST dataset.

Imperfect BK. Handling imperfect BK is an under-explored topic in ILP. We can distinguish between two
types of imperfect BK: missing BK and too much BK, which we discussed in Section 4.3.2.

5.2 Optimality

There are often multiple (sometimes infinite) hypotheses that solve the ILP problem (or have the same
training error). In such cases, which hypothesis should we choose?

5.2.1 Occamist Bias

Many systems try to learn a textually minimal hypothesis. This approach is justified as following an
Occamist bias (Schaffer, 1993). The most common interpretation of an Occamist bias is that amongst all
hypotheses consistent with the data, the simplest is the most likely28. Most approaches use an Occamist
bias to find the smallest hypothesis, measured in terms of the number of clauses (Muggleton et al.,
2015), literals (Law et al., 2014), or description length (Muggleton, 1995). Most systems are not, however,
guaranteed to induce the smallest programs. A key reason for this limitation is that many approaches
learn a single clause at a time leading to the construction of sub-programs that are sub-optimal in terms
of program size and coverage. For instance, Aleph, described in detail in the next section, offers no
guarantees about the program size and coverage. Newer systems address this limitation (Corapi et al.,
2011; Law et al., 2014; Cropper & Muggleton, 2016; Kaminski et al., 2018; Cropper & Morel, 2021) through
meta-level reasoning (Section 4.5). For instance, ASPAL (Corapi et al., 2011) is given as input a hypothesis
space with a set of candidate clauses. The ASPAL task is to find a minimal subset of clauses that entails
all the positive and none of the negative examples. ASPAL uses ASP’s optimisation abilities to provably
learn the program with the fewest literals.

28. Domingos (1999) points out that this interpretation is controversial, partly because Occam’s razor is interpreted in two
different ways. Following Domingos (1999), let the generalisation error of a hypothesis be its error on unseen examples
and the training error be its error on the examples it was learned from. The formulation of the razor that is perhaps closest
to Occam’s original intent is given two hypotheses with the same generalisation error, the simpler one should be preferred
because simplicity is desirable in itself. The second formulation, which most ILP systems follow, is different and can be
stated as given two hypotheses with the same training error, the simpler one should be preferred because it is likely to have
lower generalisation error. Domingos (1999) points out that the first razor is largely uncontroversial, but the second one,
taken literally, is provably and empirically false (Zahálka & Zelezný, 2011). Many systems do not distinguish between the
two cases. We therefore also do not make any distinction.
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5.2.2 Cost-minimal Programs

Learning efficient logic programs has long been considered a difficult problem (Muggleton & De Raedt,
1994; Muggleton et al., 2012), mainly because there is no declarative difference between an efficient
program, such as mergesort, and an inefficient program, such as bubble sort. To address this issue,
Metaopt (Cropper & Muggleton, 2019) learns efficient programs. Metaopt maintains a cost during the
hypothesis search and uses this cost to prune the hypothesis space. To learn minimal time complex-
ity logic programs, Metaopt minimises the number of resolution steps. For instance, imagine learning
a find duplicate program, which finds a duplicate element in a list e.g. [p,r,o,g,r,a,m] ↦→ r, and
[i,n,d,u,c,t,i,o,n] ↦→ i. Given suitable input data, Metagol induces the program:

f(A,B):- head(A,B),tail(A,C),element(C,B).

f(A,B):- tail(A,C),f(C,B).

This program goes through the elements of the list checking whether the same element exists in the rest
of the list. Given the same input, Metaopt induces the program:

f(A,B):- mergesort(A,C),f1(C,B).

f1(A,B):- head(A,B),tail(A,C),head(C,B).

f1(A,B):- tail(A,C),f1(C,B).

This program first sorts the input list and then goes through the list to check for duplicate adjacent
elements. Although larger, both in terms of clauses and literals, the program learned by Metaopt is more
efficient (O (n log n)) than the program learned by Metagol (O (n2)).

Other systems can also learn optimal programs (Schüller & Benz, 2018). For instance, FastLAS (Law
et al., 2020) follows this idea and takes as input a custom scoring function and computes an optimal
solution for the given scoring function. The authors show that this approach allows a user to optimise
domain-specific performance metrics on real-world datasets, such as access control policies.

5.3 Infinite Domains

Some systems,mostlymeta-level approaches, cannot handle infinite domains (Corapi et al., 2011; Athakravi
et al., 2013; Evans & Grefenstette, 2018; Kaminski et al., 2018; Evans et al., 2021). Pure ASP-based systems
(Corapi et al., 2011; Kaminski et al., 2018; Evans et al., 2021) struggle to handle infinite domains because
(most) current ASP solvers only work on ground programs, i.e. they need a finite grounding. ASP can
work with infinite domains as long as the grounding is finite. This finite grounding restriction is often
achieved by enforcing syntactic restrictions on the programs, such as finitely-ground programs Calimeri
et al. (2008). ASP systems (which combine a grounder and a solver), such as Clingo (Gebser et al., 2014),
first take a first-order program as input, ground it using an ASP grounder, and then use an ASP solver
to determine whether the ground problem is satisfiable. This approach leads to the grounding bottle-
neck problem (Balduccini et al., 2013), where grounding can be so large that it is simply intractable. This
grounding issue is especially problematic when reasoning about complex data structures, such as lists.
For instance, grounding the permutation relation over the ASCII characters would require 128! facts. The
grounding bottleneck is especially a problem when reasoning about real numbers29. For instance, ILASP
(Law et al., 2014) can represent real numbers as strings and can delegate reasoning to Python (via Clingo’s

29. Most ASP implementations do not natively support lists nor real numbers, although both can be represented using other
means.
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scripting feature). However, in this approach, the numeric computation is performed when grounding the
inputs, so the groundingmust be finite, whichmakes it impractical. This grounding problem is not specific
to ASP-based systems. For instance, ∂ ILP is an ILP system based on a neural network, but it only works
on BK in the form of a finite set of ground atoms. This grounding problem is essentially the fundamental
problem faced by table-based ML approaches that we discussed in Section 4.3.

One approach tomitigate this problem is to use context-dependent examples (Law et al., 2016), where
BK can be associated with specific examples so that an ILP systems need only ground part of the BK.
Although this approach is shown to improve the grounding problem compared to not using context-
dependent examples, the approach still needs a finite grounding for each example and still struggles as
the domain size increases (Cropper & Morel, 2021).

5.4 Recursion

The power of recursion is that an infinite number of computations can be described by a finite recursive
program (Wirth, 1985). In ILP, recursion is often crucial for generalisation. We illustrate this importance
with two examples.

Example 5 (Reachability). Consider learning the concept of reachability in a graph. Without recursion, an
ILP system would need to learn a separate clause to define reachability of different lengths. For instance,
to define reachability depths for 1-4 would require the program:

reachable(A,B):- edge(A,B).

reachable(A,B):- edge(A,C),edge(C,B).

reachable(A,B):- edge(A,C),edge(C,D),edge(D,B).

reachable(A,B):- edge(A,C),edge(C,D),edge(D,E),edge(E,B).

This program does not generalise because it does not define reachability for arbitrary depths. Moreover,
most systems would need examples of each depth to learn such a program. By contrast, a system that
supports recursion can learn the program:

reachable(A,B):- edge(A,B).

reachable(A,B):- edge(A,C),reachable(C,B).

Although smaller, this program generalises reachability to any depth. Moreover, systems can learn this
definition from a small number of examples of arbitrary reachability depth.

Example 6 (String transformations). Reconsider the string transformation problem from the introduction
(Section 1.2). As with the reachability example, without recursion, a systemwould need to learna separate
clause to find the last element for each list of length n , such as:

last(A,B):- tail(A,C),empty(C),head(A,B).

last(A,B):- tail(A,C),tail(C,D),empty(D),head(C,B).

last(A,B):- tail(A,C),tail(C,D),tail(D,E),empty(E),head(E,B).

By contrast, a system that supports recursion can learn the compact program:

last(A,B):- tail(A,C),empty(C),head(A,B).

last(A,B):- tail(A,C),last(C,B).
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Because of the symbolic representation and the recursive nature, this program generalises to lists of
arbitrary length and which contain arbitrary elements (e.g. integers and characters).

Without recursion it is often difficult for a system to generalise from small numbers of examples (Crop-
per et al., 2015). Moreover, recursion is vital for many program synthesis tasks, such as the quicksort
scenario from the introduction. Despite its importance, learning recursive programs has long been a
difficult problem (Muggleton et al., 2012). Moreover, there are many negative theoretical results on the
learnability of recursive programs (Cohen, 1995d). As Table 4 shows, many systems cannot learn recursive
programs, or can only learn it in a limited form.

A common limitation is that many systems rely on bottom clause construction (Muggleton, 1995),
which we discuss in detail in Section 6.1. In this approach, for each positive example, a system creates
the most specific clause that entails the example and then tries to generalise the clause to entail other
examples. However, because a system learns only a single clause per example30, this covering approach
requires examples of both the base and inductive cases, which means that such systems struggle to learn
recursive programs, especially from small numbers of examples.

Interest in recursion has resurged recently with the introduction of meta-interpretive learning (MIL)
(Muggleton et al., 2014, 2015; Cropper et al., 2020) and the MIL system Metagol (Cropper & Muggleton,
2016). The key idea of MIL is to use metarules (Section 4.4.2) to restrict the form of inducible programs
and thus the hypothesis space. For instance, the chainmetarule (P (A,B) ← Q (A,C ), R (C ,B)) allows
Metagol to induce programs31 such as:

f(A,B):- tail(A,C),head(C,B).

Metagol induces recursive programs using recursive metarules, such as the tail recursivemetarule P(A,B)
← Q(A,C), P(C,B). Metagol can also learn mutually recursive programs, such as learning the definition of
an even number by also inventing and learning the definition of an odd number (even_1):

even(0).

even(A):- successor(A,B),even_1(B).

even_1(A):- successor(A,B),even(B).

Many systems can now learn recursive programs (Law et al., 2014; Evans & Grefenstette, 2018; Kaminski
et al., 2018; Evans et al., 2021; Cropper & Morel, 2021). With recursion, systems can generalise from
small numbers of examples, often a single example (Lin et al., 2014; Cropper, 2019). For instance, Popper
(Cropper & Morel, 2021) can learn list transformation programs from only a handful of examples, such as
a program to drop the last element of a list:

droplast(A,B):- tail(A,B),empty(B).

droplast(A,B):- tail(A,C),droplast(C,D),head(A,E),cons(E,D,B).

The ability to learn recursive programs has opened ILP to new application areas, including learning string
transformations programs (Lin et al., 2014), robot strategies (Cropper & Muggleton, 2015), context-free
grammars (Muggleton et al., 2014), and answer set grammars (Law et al., 2019).

30. This statement is not true for all systems that employ bottom clause construction. XHAIL (Ray, 2009), for instance, can
induce multiple clauses per example.

31. Metagol can induce longer clauses though predicate invention, which we discuss in Section 5.5.
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5.5 Predicate Invention

Most systems assume that the given BK is suitable to induce a solution. This assumption may not always
hold. Rather than expecting a user to provide all the necessary BK, the goal of predicate invention (PI)
is for a system to automatically invent new auxiliary predicate symbols, i.e. to introduce new predicate
symbols in a hypothesis that are not given the examples nor the BK32 This idea is similar to when humans
create new functions when manually writing programs, such as to reduce code duplication or to improve
readability. For instance, to learn the quicksort algorithm, a learner needs to be able to partition the
list given a pivot element and append two lists. If partition and append are not provided in BK, the
learner would need to invent them.

PI has repeatedly been stated as an important challenge (Muggleton & Buntine, 1988; Stahl, 1995;
Muggleton, 1994b; Muggleton et al., 2012). Russell (2019) even argues that the automatic invention of
new high-level concepts is the most important step needed to reach human-level AI. A classical example
of PI is learning the definition of grandparent from only the background relations mother and father.
Given suitable examples and no other background relations, a system can learn the program:

grandparent(A,B):- mother(A,C),mother(C,B).

grandparent(A,B):- mother(A,C),father(C,B).

grandparent(A,B):- father(A,C),mother(C,B).

grandparent(A,B):- father(A,C),father(C,B).

Although correct, this program is large and has 4 clauses and 12 literals. By contrast, consider the program
learned by a system which supports PI:

grandparent(A,B):- inv(A,C),inv(C,B).

inv(A,B):- mother(A,B).

inv(A,B):- father(A,B).

To learn this program, a system has invented a new predicate symbol inv. This program is semantically
equivalent33 to the previous one, but is shorter both in terms of the number of literals and clauses. The
invented symbol inv can be interpreted as parent. In other words, if we rename inv to parent we have
the program:

grandparent(A,B):- parent(A,C),parent(C,B).

parent(A,B):- mother(A,B).

parent(A,B):- father(A,B).

As this example shows, PI can help learn smaller programs, which, in general, is preferable because most
systems struggle to learn large programs (Cropper et al., 2020b; Cropper & Dumančić, 2020).
PI has been shown to help reduce the size of programs, which in turn reduces sample complexity and
improves predictive accuracy (Dumančić & Blockeel, 2017; Cropper, 2019; Cropper et al., 2020; Dumančić
et al., 2019; Dumancic et al., 2021).

32. PI is a form of non-observational predicate learning, where examples of the target relations are not directly given (Mug-
gleton, 1995).

33. This use of the term semantically equivalent is imprecise. Whether these two programs are strictly equivalent depends
on the definition of logical equivalence, for which there are many (Maher, 1988). Moreover, equivalence between the two
programs is further complicated because they have different vocabularies (because of the invented predicate symbol). Our
use of equivalence is based on the two programs having the same logical consequences for the target predicate symbol
grandparent.
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To further illustrate the power of PI, imagine learning a droplasts program, which removes the
last element of each sublist in a list, e.g. [alice,bob,carol] ↦→ [alic,bo,caro]. Given suitable
examples and BK, Metagolho (Cropper et al., 2020) learns the higher-order program:

droplasts(A,B):- map(A,B,droplasts1).

droplasts1(A,B):- reverse(A,C),tail(C,D),reverse(D,B).

To learn this program, Metagolho invents the predicate symbol droplasts1, which is used twice in the
program: once as term in the literal map(A,B,droplasts1) and once as a predicate symbol in the
literal droplasts1(A,B). This higher-order program uses map to abstract away the manipulation of the
list to avoid the need to learn an explicitly recursive program (recursion is implicit in map).

Now consider learning a double droplasts program (ddroplasts), which extends the droplast prob-
lem so that, in addition to dropping the last element from each sublist, it also drops the last sublist, e.g.
[alice,bob,carol] ↦→ [alic,bo]. Given suitable examples, metarules, and BK, Metagolho learns
the program:

ddroplasts(A,B):- map(A,C,ddroplasts1),ddroplasts1(C,B).

ddroplasts1(A,B):- reverse(A,C),tail(C,D),reverse(D,B).

This program is similar to the aforementioned droplasts program, but additionally reuses the invented
predicate symbol ddroplasts1 in the literal ddroplasts1(C,B). This program illustrates the power
of PI to help learn substantially more complex programs.

Most early attempts at PI were unsuccessful, and, as Table 4 shows, most systems do not support it.
As Kramer (1995) points out, PI is difficult for at least three reasons:

• When should we invent a new symbol? There must be a reason to invent a new symbol; otherwise,
we would never invent one.

• How should you invent a new symbol? How many arguments should it have?
• How do we judge the quality of a new symbol? When should we keep an invented symbol?

There are many PI techniques. We briefly discuss some approaches now.

5.5.1 Inverse Resolution

Early work on PI was based on the idea of inverse resolution (Muggleton & Buntine, 1988) and specifically
Woperators. Discussing inverse resolution in depth is beyond the scope of this paper. We refer the reader
to the original work of Muggleton and Buntine (1988) or the overview books by Nienhuys-Cheng and Wolf
(1997) and De Raedt (2008) for more information. Although inverse resolution approaches could support
PI, they never demonstrated completeness, partly because of the lack of a declarative bias to delimit the
hypothesis space (Muggleton et al., 2015).

5.5.2 Placeholders

One approach to PI is to predefine invented symbols through mode declarations, which Leban et al.
(2008) call placeholders and which Law (2018) calls prescriptive PI. For instance, to invent the parent
relation, a suitable modeh declaration would be required, such as:

modeh(1,inv(person,person)).
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However, this placeholder approach is limited because it requires that a user manually specify the arity
and argument types of a symbol (Law et al., 2014), which rather defeats the point, or requires generating
all possible invented predicates (Evans & Grefenstette, 2018; Evans et al., 2021), which is computationally
expensive.

5.5.3 Metarules

To reduce the complexity of PI, Metagol uses metarules (Section 4.4.2) to define the hypothesis space.
For instance, the chain metarule (P (A,B) ← Q (A,C ), R (C ,B)) allows Metagol to induce programs
such as:

f(A,B):- tail(A,C),tail(C,B).

This program drops the first two elements from a list. To induce longer clauses, such as to drop first
three elements from a list, Metagol can use the same metarule but can invent a new predicate symbol
and then chain their application, such as to induce the program34:

f(A,B):- tail(A,C),inv(C,B).

inv(A,B):- tail(A,C),tail(C,B).

A side-effect of this metarule-driven approach to PI is that problems are forced to be decomposed into
smaller problems. For instance, suppose you want to learn a program that drops the first four elements
of a list, then Metagol could learn the following program, where the invented predicate symbol inv is
used twice:

f(A,B):- inv(A,C),inv(C,B).

inv(A,B):- tail(A,C),tail(C,B).

To learn this program, Metagol invents the predicate symbol inv and induces a definition for it using the
chain metarule. Metagol uses this new predicate symbol in the definition for the target predicate f.

5.5.4 Lifelong Learning

The aforementioned techniques for PI are aimed at single-task problems. PI can be performed by contin-
ually learning programs (meta-learning). For instance Lin et al. (2014) use a technique called dependent
learning to enable Metagol to learn string transformations programs over time. Given a set of 17 string
transformation tasks, their learner automatically identifies easier problems, learn programs for them,
and then reuses the learned programs to help learn programs for more difficult problems. To determine
which problems are easier to solve, the authors initially start with a very strong bias in the form of allow-
ing a learner to only use one rule to find a solution. They then progressively relax this restriction, each
time allowing more rules in a solution. The authors use PI to reform the bias of the learner where after
a solution is learned not only is the target predicate added to the BK but also its constituent invented
predicates. The authors experimentally show that their multi-task approach performs substantially bet-
ter than a single-task approach because learned programs are frequently reused. Moreover, they show
that this approach leads to a hierarchy of BK composed of reusable programs, where each builds on
simpler programs. Figure 4 shows this approach. Note that this lifelong setting raises challenges, which
we discuss in Section 9.1.

34. We could unfold (Tamaki & Sato, 1984) this program to remove the invented symbol to derive the program f(A,B):-

tail(A,C),tail(C,D),tail(D,B).
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Figure 4: This figure is taken from the work of Lin et al. (2014). It shows the programs learned by de-
pendent (left) and independent (right) learning approaches. The size bound column denotes
the number of clauses in the induced program. The nodes correspond to programs and the
numbers denote the task that the program solves. For the dependent learning approach, the
arrows correspond to the calling relationships of the induced programs. For instance, the pro-
gram to solve task 3 reuses the solution to solve task 12, which in turn reuses the solution to
task 17, which in turn reuses the solution to task 15. Tasks 4, 5, and 16 cannot be solved using
an independent learning approach, but can when using a dependent learning approach.

5.5.5 Theory Refinement

The aim of theory refinement (Wrobel, 1996) is to improve the quality of a theory. Theory revision ap-
proaches (Adé et al., 1994; Richards&Mooney, 1995) revise a program so that it entails missing answers or
does not entail incorrect answers. Theory compression (De Raedt et al., 2008) approaches select a sub-
set of clauses such that the performance is minimally affected with respect to certain examples. Theory
restructuring changes the structure of a logic program to optimise its execution or its readability (Flach,
1993; Wrobel, 1996). We discuss two recent refinement approaches based on PI.

Auto-encoding logic programs. Auto-encoding logic programs (ALPs) (Dumančić et al., 2019) invent
predicates by simultaneously learning a pair of logic programs: (i) an encoder that maps the examples
given as interpretations to new interpretations defined entirely in terms of invented predicates35, and
(ii) a decoder that reconstructs the original interpretations from the invented ones. The invented inter-
pretations compress the given examples and invent useful predicates by capturing regularities in the
data36. ALPs, therefore, change the representation of the problem. The most important implication of
the approach is that the target programs are easier to express via the invented predicates. The authors
experimentally show that learning from the representation invented by ALPs improves the learning per-

35. The head of every clause in the encoder invents a predicate.
36. Evaluating the usefulness of invented predicates via their ability to compress a theory goes back to some of the earliest

work in ILP by the Duce system (Muggleton, 1987).
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formance of generative Markov logic networks (MLN) (Richardson & Domingos, 2006). Generative MLNs
learn a (probabilistic) logic program that explains all predicates in an interpretation, not a single target
predicate. The predicates invented by ALPs, therefore, aid the learning of all predicates in the BK.

Program refactoring. Knorf (Dumancic et al., 2021) pushes the idea of ALPs even further. After learning
to solve user-supplied tasks in the lifelong learning setting, Knorf compresses the learnt program by
removing redundancies in it. If the learnt program contains invented predicates, Knorf revises them and
introduces new ones that would lead to a smaller program37. By doing so, Knorf optimises the represen-
tation of obtained knowledge. The refactored program is smaller in size and contains fewer redundant
clauses. The authors experimentally demonstrate that refactoring improves learning performance in
lifelong learning. More precisely, Metagol learns to solve more tasks when using the refactored BK, es-
pecially when BK is large. Moreover, the authors also demonstrate that Knorf substantially reduces the
size of the BK program, reducing the number of literals in a program by 50% or more.

6. ILP Case Studies

We now describe in detail four ILP systems: Aleph (Srinivasan, 2001), TILDE (Blockeel & De Raedt, 1998),
ASPAL (Corapi et al., 2011), and Metagol (Cropper & Muggleton, 2016). These systems are not necessarily
the best, nor the most popular, but use considerably different techniques and are relatively simple to
explain. Aleph is based on inverse entailment (Muggleton, 1995) and uses bottom clause construction
to restrict the hypothesis space. Despite its age, Aleph is still one of the most popular systems. TILDE
is a first-order generalisation of decision trees and uses information gain to divide and conquer the
training examples. ASPAL is a meta-level system that uses an ASP solver to solve the ILP problem, which
has influenced much subsequent work, notably ILASP. Finally, Metagol uses a Prolog meta-interpreter to
construct a proof of a set of examples and extracts a program from the proof. We discuss these systems
in turn.

6.1 Aleph

Progol (Muggleton, 1995) is arguably the most influential ILP system, having influenced many systems
(Inoue, 2004; Srinivasan, 2001; Ray, 2009; Ahlgren & Yuen, 2013), which in turn have inspired many other
systems (Katzouris et al., 2015, 2016; Schüller & Benz, 2018). Aleph is based on Progol. We discuss Aleph,
rather than Progol, because the implementation, written in Prolog, is easier to use and the manual is
more detailed.

6.1.1 Aleph Setting

The Aleph problem setting is:

Given:
- A set of mode declarationsM
- Background knowledge B in the form of a normal program
- Positive (E +) and negative (E −) examples represented as sets of ground facts

Return: A normal program hypothesis H such that:

37. The idea of learning new predicates to restructure knowledge bases goes back at least to Flach (1993).
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- H is consistent withM
- [e ∈ E +

, H ∪ B |= e (i.e. is complete)
- [e ∈ E −, H ∪ B 6 |= e (i.e. is consistent)

Note that the examples can be different relations to generalise, i.e. they can have different predicate
symbols.

6.1.2 Aleph Algorithm

Aleph starts with an empty hypothesis and uses the following set covering approach:

1. Select a positive example to generalise. If none exists, stop and return the current hypothesis;
otherwise proceed to the next step.

2. Construct the most specific clause (the bottom clause) (Muggleton, 1995) that is consistent with
the mode declarations (Section 4.4.1) and entails the example.

3. Search for a clause more general than the bottom clause and has the best score.
4. Add the clause to the hypothesis and remove all the positive examples covered by it. Return to

step 1.

We discuss the basic approaches to steps 2 and 3.

Step 2: Bottom Clause Construction

The purpose of constructing a bottom clause is to bound the search in step 3. The bottom clause is the
most specific clause that entails the example to be generalised. In general, a bottom clause can have
infinite cardinality. Therefore, Aleph uses mode declarations (Section 4.4.1) to restrict them. Describing
how to construct bottom clauses is beyond the scope of this paper. See the paper by Muggleton (1995)
or the book of De Raedt (2008) for contrasting methods. Having constructed a bottom clause, Aleph can
ignore any clauses that are not more general than it. In other words, Aleph only considers clauses that
are generalisations of the bottom clause, which must all entail the example. We use the bottom clause
definition provided by De Raedt (2008):

Definition 4 (Bottom clause). Let H be a clausal hypothesis and C be a clause. Then the bottom clause
⊥(C ) is the most specific clause such that:

H ∪ ⊥(C ) |= C

Example 7 (Bottom clause). To illustrate bottom clauses in Aleph, we use a modified example from De
Raedt (2008). LetM be the mode declarations:

M =




:- modeh(*,pos(+shape)).

:- modeb(*,red(+shape)).

:- modeb(*,blue(+shape)).

:- modeb(*,square(+shape)).

:- modeb(*,triangle(+shape)).

:- modeb(*,polygon(+shape)).



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Let B be the BK:

B =




red(s1).

blue(s2).

square(s1).

triangle(s2).

polygon(A):- rectangle(A).

rectangle(A):- square(A).




Let e be the positive example pos(s1). Then:

⊥(e) = pos(A):- red(A),square(A),rectangle(A),polygon(A).

This bottom clause contains the literalrectangle(A)because it is implied by square(A). The inclusion
of rectangle(A) in turn implies the inclusion of polygon(A). Although blue and triangle appear
in B , they are irrelevant to e , so do not appear in the bottom clause.

Any clause that is not more general than the bottom clause cannot entail e so can be ignored. For
instance, we can ignore the clause pos(A):- blue(A) because it is not more general than⊥(e).

Constant symbols. Note that⊥(e) contains variables, rather than constant symbols, which wouldmake
the bottom clause even more specific. The reason is that the given mode declarations forbid con-
stant symbols. Had modeb(*,polygon(#shape)) been given in M , then ⊥(e) would also contain
polygon(s1).

Step 3: Clause Search

Having constructed a bottom clause, Aleph searches for generalisations of it. The importance of con-
structing the bottom clause is that it bounds the search space from below (the bottom clause). Figure 5
illustrates the search space of Aleph when given the bottom clause⊥(e) from our previous shape exam-
ple. Aleph performs a bounded breadth-first search to enumerate shorter clauses before longer ones,
although a user can easily change the search strategy38. The search is bounded by several parameters,
such as a maximum clause size and a maximum proof depth. In this scenario, Aleph starts with the most
general generalisation of⊥(e), which is pos(A), which simply says that everything is true. Aleph evaluates
(assigns a score) to each clause in the search, i.e. each clause in the lattice. Aleph’s default evaluation
function is coverage defined as P − N , where P and N are the numbers of positive and negative exam-
ples respectively entailed by the clause39. Aleph then tries to specialise a clause by adding literals to
the body of it, which it selects from the bottom clause or by instantiating variables. Each specialisation
of a clause is called a refinement. Properties of refinement operators (Shapiro, 1983) are well-studied
in ILP (Nienhuys-Cheng & Wolf, 1997; De Raedt, 2008), but are beyond the scope of this paper. The key
thing to understand is that Aleph’s search is bounded from above (the most general clause) and below
(the most specific clause). Having found the best clause, Aleph adds it to the hypothesis, removes all
the positive examples covered by the new hypothesis, and returns to Step 1. Describing the full clause
search mechanism and how the score is computed is beyond the scope of this work, so we refer to the
reader to the Progol tutorial by Muggleton and Firth (2001) for a more detailed introduction.

38. Progol, by contrast, uses an A* search (Muggleton, 1995).
39. Aleph comes with 13 evaluation functions, such as entropy and compression.
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Figure 5: Aleph bounds the hypothesis space from above (the most general hypothesis) and below (the
most specific hypothesis). Aleph starts the search from the most general hypothesis and spe-
cialises it (by adding literals from the bottom clause) until it finds the best hypothesis.

6.1.3 Discussion

Advantages. Aleph is one of themost popular ILP systems because (i) it has a stable and easily available
implementation with many options, and (ii) it has good empirical performance. Moreover, it is a single
Prolog file, which makes it easy to download and use40. Because it uses a bottom clause to bound the
search, Aleph is also efficient at identifying relevant constant symbols that may appear in a hypothesis,
which is not the case for pure top-down approaches41. Aleph also supports many other features, such as
numerical reasoning, inducing constraints, and allowing user-supplied cost functions.

Disadvantages. Because it is based on inverse entailment, and only learns a single clause at a time,
Aleph struggles to learn recursive programs and optimal programs and does not support PI. Aleph also
uses many parameters, such as parameters that change the search strategy when generalising a bottom
clause (step 3) and parameters that change the structure of learnable programs (such as limiting the
number of literals in the bottom clause). These parameters can greatly influence learning performance.
Even for experts, it is non-trivial to find a suitable set of parameters for a problem.

40. Courtesy of Fabrizio Riguzzi and Paolo Niccolò Giubelli, Aleph is now available as a SWIPL package at https://www.swi-
prolog.org/pack/list?p=aleph

41. As the Aleph manual states, “the bottom clause is really useful to introduce constants (these are obtained from the seed
example”.
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6.2 TILDE

TILDE (Blockeel & De Raedt, 1998) is a first-order generalisation of decision trees, and specifically the C4.5
(Quinlan, 1993) learning algorithm. TILDE learns from interpretations, instead of entailment as Aleph, and
is an instance of top-down methodology.

The learning setup of TILDE is different from other ILP systems in the sense that it closely mimics
the standard classification setup from machine learning. That is, TILDE learns a program that assigns a
class to an example (an interpretation). Assigning a class is done by checking which class an example
entails, given the program and background knowledge. Class assignment is indicated as a special literal
of the form class(c), where c comes from a set of classes C . For instance, if a classifier differentiates
between cats and dog then C = {cat , dog }.

6.2.1 TILDE Setting

The TILDE problem setting is:

Given:
- A set of classes C
- A set of mode declarations
- A set of examples E (a set of interpretations)
- BK in the form of a definite program

Return: A (normal) logic program hypothesis H such that:
- [e ∈ E , H ∧ BK ∧ e |= cl ass (c), c ∈ C , where c is the class of the example e
- [e ∈ E , H ∧ BK ∧ e 6 |= cl ass (c ′), c ′ ∈ C − {c}

6.2.2 TILDE Algorithm

TILDE behaves almost the same as C4.5 limited to binary attributes, meaning that it uses the same heuris-
tics and pruning techniques. What TILDE does differently is the generation of candidates splits. Whereas
C4.5 generates candidates as attribute-value pairs (or value inequalities in case of continuous attributes),
TILDE uses conjunctions of literals. The conjunctions are explored gradually from the most general to
the most specific ones, where θ-subsumption (Section 2) is used as an ordering.

To find a hypothesis, TILDE employs a divide-and-conquer strategy recursively repeating the follow-
ing steps:

• if all examples belong to the same class, create a leaf predicting that class
• for each candidate conjunction conj , find the normalised information gain when splitting on conj

– if no candidate provides information gain, turn the previous node into a leaf predicting the
majority class

• create a decision node n that splits on the candidate conjunction with the highest information
gain

• Recursively split on the subsets of data obtained by the splits and add those nodes as children of
n

Example8 (Machine repair example (Blockeel & De Raedt, 1998)). To illustrate TILDE’s learning procedure,
consider the following example. Each example is an interpretation (a set of facts) and it describes (i) a
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machine with parts that are worn out, and (ii) an action an engineer should perform: fix the machine,
send it back to the manufacturer, or nothing if the machine is ok. These actions are the classes to
predict.

E =




E1: {worn(gear). worn(chain). class(fix).}

E2: {worn(engine). worn(chain). class(sendback).}

E3: {worn(wheel). class(sendback).}

E4: {class(ok).}




Background knowledge contains information which parts are replaceable and which are not:

B =




replaceable(gear).

replaceable(chain).

irreplaceable(engine).

irreplaceable(wheel).




Like any top-down approach, TILDE starts with the most general program; in this case, the initial program
assigns the majority class to all examples. TILDE then gradually refines the program (specialises it) until
satisfactory performance is reached. To refine the program, TILDE uses mode declarations. Due to the
top-down nature of TILDE, it is more natural to understandmodes as conjunctions that can be added to a
current clause. This interpretation does not conflict the explanation given in Section 4.4. TILDE interprets
an input argument as bounding to a variable that already exists in the current clause; this is identical to
stating that the argument needs to be instantiated when literal is called as it will be instantiated by the
existing literal that introduces that variable. Similarly, in TILDE, an output argument introduces a new
variable; this variable will be instantiated after the literal is called.

Assume the mode declarations:

modeb(*,replaceable(+X)).

modeb(*,irreplaceable(+X)).

modeb(*,worn(+X)).

Each mode declaration forms a candidate split:

worn(X).

replaceable(X).

irreplaceable(X).

Computing the information gain for all of the candidate splits (as with propositional C4.5), the conjunction
worn(X) results in the highest gain and is set as the root of the tree. For details about the C4.5 and
information gain, we refer the reader to the excellent machine learning book by Mitchell (1997).

TILDE proceeds by recursively repeating the same procedure over both outcomes of the test: when
worn(X) is true and false. When the root test fails, the dataset contains a single example (E4); TILDE
forms a branch by creating the leaf predicting the class ok. When the root test succeeds, not all examples
(E1, E2, E3) belong to the same class. TILDE thus refines the root node further:

worn(X), worn(X).

worn(X), replaceable(X).

worn(X), irreplaceable(X)

worn(X), worn(Y).

worn(X), replaceable(Y).

worn(X), irreplaceable(Y)
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worn(X)

irreplaceable(X) ok

sendback fix

class(X,sendback) :- worn(X), irreplaceable(X), !.

class(X,fix) :- worn(X), !.

class(X,ok).

Figure 6: TILDE learns tree-shaped (normal) programs. Clauses in the program correspond to paths along
the tree.

The candidate refinement worn(X), irreplaceable(X) perfectly divides the remaining examples
and thus irreplaceable(X) is added as the subsequent test. All examples are classified correctly, and
thus the learning stops.

The final TILDE tree is (illustrated in Figure 6):

class(sendback):- worn(X),irreplaceable(X),!.

class(fix):- worn(X),!.

class(ok).

Note the usage of the cut (!) operator, which is essential to ensure that only one branch of the decision
tree holds for each example.

6.2.3 Discussion

Advantages. An interesting aspect of TILDE is that it learns normal logic programs (which include nega-
tion) instead of definite logic programs. Another advantage of TILDE is that, compared to other ILP sys-
tems, it supports both categorical and numerical data. Indeed, TILDE is an exception among ILP systems,
which usually struggle to handle numerical data. At any refinement step, TILDE can add a literal of the
form <(X,V), or equivalently X < V with V being a value. TILDE’s stepwise refinement keeps the number
of inequality tests tractable.

Disadvantages. Although TILDE learns normal programs, it requires them to be in the shape of a tree
anddoes not support recursion. Furthermore, TILDE inherits the limitations of top-down systems, such as
generating many needless candidates. Another weakness of TILDE is the need for lookahead. Lookahead
is needed when a single literal is useful only in a conjunction with another literal. Consider, for instance,
that the machine repair scenario has a relation number_of_components and the target rule that a
machine needs to be fixed when a part consisting of more than three parts is worn out:

class(fix):- worn(X),number_of_components(X,Y),Y > 3.

To find this clause, TILDE would first refine the clause:

class(fix):- worn(X).

into:

class(fix):- worn(X),number_of_components(X,Y).
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However, this candidate clause would be rejected as it yields no information gain (every example cov-
ered by the first clause is also covered by the second clause). The introduction of a literal with the
number_of_components predicate is only helpful if it is introduced together with the inequality related
to the second argument of the literal. Informing TILDE about this dependency is known as lookahead.

6.3 ASPAL

ASPAL (Corapi et al., 2011) was one of the first meta-level ILP systems, which directly influenced other
ILP systems, notably ILASP. ASPAL builds on TAL (Corapi et al., 2010), but is simpler to explain42. Indeed,
ASPAL is one of the simplest ILP systems to explain. It uses the mode declarations to build every possible
clause that could be in a hypothesis. It adds a flag to each clause indicating whether the clause should
be in a hypothesis. It then formulates the problem of deciding which flags to turn on as an ASP problem.

6.3.1 ASPAL Setting

The ASPAL problem setting is:

Given:
- A set of mode declarationsM
- B in the form of a normal program
- E + positive examples represented as a set of facts
- E − negative examples represented as a set of facts
- A penalty function γ

Return: A normal program hypothesis H such that:
- H is consistent withM
- [e ∈ E +

, H ∪ B |= e (i.e. is complete)
- [e ∈ E −, H ∪ B 6 |= e (i.e. is consistent)
- The penalty function γ is minimal

6.3.2 ASPAL Algorithm

ASPAL encodes an ILP problem as a meta-level ASP program. The answer sets of this meta-level program
are solutions to the ILP problem. The ASPAL algorithm is one of the simplest in ILP:

1. Generate all possible rules consistent with the given mode declarations. Assign each rule a unique
identifier and add that as an abducible (guessable) atom in each rule.

2. Use an ASP solver to find a minimal subset of the rules (by formulating the problem as an ASP
optimization problem).

Step 1 is a little more involved, and we explain why below. Also, similar to Aleph, ASPAL has several input
parameters that constrain the size of the hypothesis space, such as themaximum number of body literals
and themaximum number of clauses. Step 2 uses an ASP optimisation statement to learn a program with
a minimal penalty.

42. A key difference is that TAL is implemented in Prolog and uses list structure to iteratively build rules. By contrast, using
list-like structure in ASP is inefficient and often impossible as the solver completely grounds the program before solving it.
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6.3.3 ASPAL Example

Example 9 (ASPAL). To illustrate ASPAL, we slightly modify the example from Corapi et al. (2011). We also
ignore the penalty statement. ASPAL is given as input B , E +, E −, andM :

B =




bird(alice).

bird(betty).

can(alice,fly).

can(betty,swim).

ability(fly).

ability(swim).




E+ =
{
penguin(betty).

}
E− =

{
penguin(alice).

}

M =





modeh(1, penguin(+bird)).

modeb(1, bird(+bird)).

modeb(*,not can(+bird,#ability))





Given these modes43 , the possible rules are:

penguin(X):- bird(X).

penguin(X):- bird(X), not can(X,fly).

penguin(X):- bird(X), not can(X,swim).

penguin(X):- bird(X), not can(X,swim), not can(X,fly).

ASPAL generates skeleton rules which replace constants with variables and adds an extra literal to each
rule as an abducible literal:

penguin(X):- bird(X), rule(r1).

penguin(X):- bird(X), not can(X,C1), rule(r2,C1).

penguin(X):- bird(X), not can(X,C1), not can(X,C2), rule(r3,C1,C2).

ASPAL forms a meta-level ASP program from these rules that is passed to an ASP solver:

bird(alice).

bird(betty).

can(alice,fly).

can(betty,swim).

ability(fly).

ability(swim).

penguin(X):- bird(X), rule(r1).

penguin(X):- bird(X), not can(X,C1), rule(r2,C1).

penguin(X):- bird(X), not can(X,C1), not can(X,C2), rule(r3,C1,C2).

0 {rule(r1),rule(r2,fly),rule(r2,swim),rule(r3,fly,swim)}4.

goal : - penguin(betty), not penguin(alice).

: - not goal.

The key statement in this meta-level program is:

43. Note that ‘notcan‘ is used in the original ASPAL paper but we think this usage is a typo.
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0 {rule(r1),rule(r2,fly),rule(r2,swim),rule(r3,fly,swim)}4.

This statement is a choice rule, which states none or at most four of the literals {rule(r1), rule(r2,fly),
rule(r2,swim), rule(r3,fly,swim)} could be true. The job of the ASP solver is to determine which of those
literals should be true (formulated as an ASP optimization problem), which corresponds to an answer
set for this program:

rule(r2,c(fly)).

Which is translated to a program:

penguin(A):- not can(A,fly).

6.3.4 Discussion

Advantages. A major advantage of ASPAL is its sheer simplicity, which has inspired other approaches,
notably ILASP. It also learns optimal programs by employing ASP optimisation constraints.

Disadvantages. The main limitation of ASPAL is scalability. It precomputes every possible rule in a
hypothesis, which is infeasible on all but trivial problems. For instance, when learning game rules from
observations (Cropper et al., 2020b), ASPAL performs poorly for this reason.

6.4 Metagol

An interpreter is a program that evaluates (interprets) programs. A meta-interpreter is an interpreter
written in the same language that it evaluates. Metagol (Muggleton et al., 2015; Cropper & Muggleton,
2016; Cropper et al., 2020) is a form of ILP based on a Prolog meta-interpreter.

6.4.1 Metagol Setting

The Metagol problem setting is:

Given:
- A set of metarulesM
- B in the form of a normal program
- E + positive examples represented as a set of facts
- E − negative examples represented as a set of facts

Return: A definite program hypothesis H such that:
- [e ∈ E +

, H ∪ B |= e (i.e. is complete)
- [e ∈ E −, H ∪ B 6 |= e (i.e. is consistent)
- [h ∈ H , \m ∈ M such that h = mθ, where θ is a substitution that grounds all the existentially

quantified variables in m

The last condition ensures that a hypothesis is an instance of the given metarules. It is this condition
that enforces the strong inductive bias in Metagol.
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6.4.2 Metagol Algorithm

Metagol uses the following procedure to find a hypothesis:

1. Select a positive example (an atom) to generalise. If one exists, proceed to step 2. If none exists,
test the hypothesis on the negative examples. If the hypothesis does not entail any negative
example stop and return the hypothesis; otherwise backtrack to a choice point at step 2 and
continue.

2. Try to prove the atom by:

(a) using given BK or an already induced clause
(b) unifying the atom with the head of a metarule (Section 4.4.2), binding the variables in a

metarule to symbols in the predicate and constant signatures, saving the substitutions, and
then proving the body of the metarule through meta-interpretation (by treating the body
atoms as examples and applying step 2 to them)

In other words, Metagol induces a logic program by constructing a proof of the positive examples. It uses
metarules to guide the proof search. After proving all the examples, Metagol checks the consistency of
the hypothesis against the negative examples. If the program is inconsistent, Metagol backtracks to
explore different proofs (hypotheses).

Metarules. Metarules are fundamental toMetagol. For instance, the chainmetarule is P(A,B):- Q(A,C),

R(C,B). The letters P, Q, and R denote second-order variables. Metagol internally represents metarules
as Prolog atoms of the form metarule(Name,Subs,Head,Body). Here Name denotes the metarule
name, Subs is a list of variables that Metagol should find substitutions for, and Head and Body are list
representations of a clause. For example, the internal representation of the chainmetarule is metarule(chain,[P,Q,R],
[P,A,B], [[Q,A,C],[R,C,B]]). Metagol represents substitutions, which we will call metasubs, as
atoms of the form sub(Name,Subs), where Name is the name of the metarule and Subs is a list of
substitutions. For instance, binding the variables P, Q, and R with second, tail, and head respec-
tively in the chain metarule leads to the metasub sub(chain,[second,tail,head]) and the clause
second(A,B):- tail(A,C),head(C,B).

Optimality. To learn optimal programs, Metagol enforces a bound on the program size (the number
of metasubs). Metagol uses iterative deepening to search for hypotheses. At depth d = 1 Metagol
is allowed to induce at most one clause, i.e. use at most one metasub. If such a hypothesis exists,
Metagol returns it. Otherwise, Metagol continues to the next iteration d +1. At each iteration d , Metagol
introduces d − 1 new predicate symbols and is allowed to use d clauses. New predicates symbols are
formed by taking the name of the task and adding underscores and numbers. For example, if the task
is f and the depth is 4 then Metagol will add the predicate symbols f_1, f_2, and f_3 to the predicate
signature.

6.4.3 Metagol Example

Example 10 (Kinship example). To illustrate Metagol, suppose you have the following BK:
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B =




mother(ann,amy). mother(ann,andy).

mother(amy,amelia). mother(amy,bob).

mother(linda,gavin).

father(steve,amy). father(steve,andy).

father(andy,spongebob). father(gavin,amelia).




And the following metarules represented in Prolog:

metarule(ident,[P,Q], [P,A,B], [[Q,A,B]]).

metarule(chain,[P,Q,R], [P,A,B], [[Q,A,C],[R,C,B]]).

We can call Metagol with a lists of positive (E +) and negative (E −) examples:

E+ =





grandparent(ann,amelia).

grandparent(steve,amelia).

grandparent(steve,spongebob).

grandparent(linda,amelia).





E− =
{
grandparent(amy,amelia).

}

In Step 1, Metagol selects an example to generalise. SupposeMetagol selectsgrandparent(ann,amelia).
In Step 2a, Metagol tries to prove this atomusing theBK or an already induced clause. Since grandparent
is not part of the BK and Metagol has not yet induced any clauses, this step fails. In Step 2b, Metagol
tries to prove this atom using a metarule. Metagol can, for instance, unify the atom with the head of the
ident metarule to form the clause:

grandparent(ann,amelia):- Q(ann,amelia).

Metagol saves a metasub for this clause:

sub(indent,[grandparent,Q])

The symbol Q in thismetasub is still a variable. Metagol recursively tries to prove the atomQ(ann,amelia).
Since there is no Q such that Q(ann,amelia) is true, this step fails. Because the ident metarule failed,
Metagol removes the metasub and backtracks to try a different metarule. Metagol unifies the atom with
the chain metarule to form the clause:

grandparent(ann,amelia):- Q(ann,C),R(C,amelia).

Metagol saves a metasub for this clause:

sub(chain,[grandparent,Q,R])

Metagol recursively tries to prove the atoms Q(ann,C) and R(C,amelia). Suppose the recursive call
to prove Q(ann,C) succeeds by substituting Q with mother to form the atom mother(ann,amy). This
substitution binds Q to mother and C to amy which is propagated to the other atom which now becomes
R(amy,amelia). Metagol also proves this second atom by substituting R with mother to form the atom
mother(amy,amelia). The proof is now complete and the metasub is:

sub(chain,[grandparent,mother,mother])
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This metasub means that Metagol has induced the clause:

grandparent(A,B):- mother(A,C),mother(C,B).

After proving the example, Metagol moves to Step 1 and picks another example to generalise. Suppose
it picks the example grandparent(steve,amelia). In Step 2a, Metagol tries to prove this atom using
the BK, which again fails, so tries to prove this atom using an already induced clause, which also fails.
Therefore, Metagol tries to prove this atom using a metarule. Metagol can again use the chain metarule
but with different substitutions to form the metasub:

sub(chain,[grandparent,father,mother])

This metasub corresponds to the clause:

grandparent(A,B):- father(A,C),mother(C,B).

Metagol has now proven the first two examples by inducing the clauses:

grandparent(A,B):- mother(A,C),mother(C,B).

grandparent(A,B):- father(A,C),mother(C,B).

If given no bound on the program size, then Metagol would prove the other two examples the same way
by inducing two more clauses to finally form the program:

grandparent(A,B):- mother(A,C),mother(C,B).

grandparent(A,B):- father(A,C),mother(C,B).

grandparent(A,B):- father(A,C),father(C,B).

grandparent(A,B):- mother(A,C),father(C,B).

In practice, however, Metagol would not learn this program. It would induce the following program:

grandparent(A,B):- grandparent_1(A,C),grandparent_1(C,B).

grandparent_1(A,B):- father(A,B).

grandparent_1(A,B):- mother(A,B).

In this program, the symbol grandparent_1 is invented and corresponds to the parent relation. How-
ever, it is difficult to concisely illustrate PI in this example. We, therefore, illustrate PI in Metagol with a
simpler example.

Example 11 (Predicate invention). Suppose we have the single positive example:

E+ =
{
f([i,l,p],p).

}

Also suppose that we only have the chainmetarule and the background relations head and tail. Given
this input, in Step 2b, Metagol will try to use the chain metarule to prove the example. However, using
only the given the BK and metarules, the only programs that Metagol can construct are combinations of
the four clauses:

f(A,B):- head(A,C),head(C,B).

f(A,B):- head(A,C),tail(C,B).

f(A,B):- tail(A,C),tail(C,B).

f(A,B):- tail(A,C),head(C,B).
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No combination of these clauses can prove the examples, so Metagol must use PI to learn a solution. To
use PI, Metagol will try to prove the example using the chainmetarule, which will lead to the construction
of the program:

f([i,l,p],p):- Q([i,l,p],C),R(C,p).

Metagol would save a metasub for this clause:

sub(chain,[f,Q,R]).

Metagol will then try to recursively prove both Q([i,l,p],C) and R(C,p). To prove Q([i,l,p],C),
Metagol will say that it cannot prove it using a relation in the BK, so it will try to invent a new predicate
symbol, which leads to the new atom f_1([i,l,p],C) and the program:

f([i,l,p],p):- f_1([i,l,p],C),R(C,p).

Note that this binds Q in the metasub to f_1. Metagol then tries to prove the f_1([i,l,p],C) and
R(C,p) atoms. To prove f_1([i,l,p],C), Metagol could use the chain metarule to form the clause:

f_1([i,l,p],C):- Q2([i,l,p],D),R2(D,C).

Metagol would save another metasub for this clause:

sub(chain,[f_1,Q2,R2]).

Metagol then tries to prove theQ2([i,l,p],D) and R2(D,C) atoms. Metagol can proveQ2([i,l,p],D)
by binding Q2 to tail so that D is bound to [l,p]. Metagol can then prove R2([l,p],C) by binding
R2 to tail so that C is bound [p]. Remember that the binding of variables is propagated through the
program, so C in R(C,p) is now bound to R([p],p). Metagol then tries to prove the remaining atom
R([p],p), which it can by binding R to head. The proof of all the atoms is now complete and the final
metasubs are:

sub(chain,[f,f_1,head]).

sub(chain,[f_1,tail,tail]).

These metasubs correspond to the program:

f(A,B):- f_1(A,C),head(C,B).

f_1(A,B):- tail(A,C),tail(C,B).

6.4.4 Discussion

Advantages. Metagol supports PI, learning recursive programs, and is guaranteed to learn the smallest
program. Because it uses metarules, Metagol can tightly restrict the hypothesis space, which means that
it is extremely efficient at finding solutions. The basic Metagol implementation is less than 100 lines of
Prolog code, which makes Metagol easy to adapt, such as to support NAF (Siebers & Schmid, 2018), types
(Morel et al., 2019), learning higher-order programs (Cropper et al., 2020), learning efficient programs
(Cropper & Muggleton, 2015, 2019), and Bayesian inference (Muggleton et al., 2013).
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Disadvantages. Deciding which metarules to use for a given task is a major problem. Given too many
metarules, the hypothesis space might be so large that the search is intractable. Given insufficient
metarules, the hypothesis space might be too small as to exclude a good hypothesis. For some tasks,
such as string transformations, it is straightforward to choose a suitable set of metarules because one
already knows the general form of hypotheses. However, when one has little knowledge of the solutions,
then Metagol is unsuitable. Although there is preliminary work in identifying universal sets of metarules
(Cropper & Muggleton, 2014; Tourret & Cropper, 2019; Cropper & Tourret, 2020), this work mostly focuses
on dyadic logic. If a problem contains predicates of arities greater than two, then Metagol is unsuitable.
Finally, Metagol cannot handle noisy examples and struggles to learn large programs (Cropper, 2017;
Cropper & Dumančić, 2020; Cropper & Morel, 2021).

7. Applications

We now briefly discuss some application areas of ILP.

Bioinformatics and drug design. Perhaps the most prominent application of ILP is in bioinformatics
and drug design. ILP is especially suitable for such problems because biological structures, including
molecules and protein interaction networks, can easily be expressed as relations: molecular bonds de-
fine relations between atoms and interactions define relations between proteins. Moreover, as men-
tioned in the introduction, ILP induces human-readable models. ILP can, therefore, make predictions
based on the (sub)structured present in biological structures which domain experts can interpret. The
types of task ILP has been applied to include identifying and predicting ligands (substructures responsi-
ble for medical activity) (Finn et al., 1998; Srinivasan et al., 2006; Kaalia et al., 2016), predicting mutagenic
activity of molecules and identifying structural alerts for the causes of chemical cancers (Srinivasan et al.,
1997, 1996), learning protein folding signatures (Turcotte et al., 2001), inferring missing pathways in pro-
tein signalling networks (Inoue et al., 2013), andmodelling inhibition in metabolic networks (Tamaddoni-
Nezhad et al., 2006).

Robot scientist. One of the most notable applications of ILP was in the Robot Scientist project (King
et al., 2009). The Robot Scientist uses logical BK to represent the relationships between protein-coding
sequences, enzymes, and metabolites in a pathway. The Robot Scientist uses ILP to automatically gener-
ate hypotheses to explain data and then devises experiments to test hypotheses, run the experiments,
interpret the results, and then repeat the cycle (King et al., 2004). Whilst researching yeast-based func-
tional genomics, the Robot Scientist became the first machine to independently discover new scientific
knowledge (King et al., 2009).

Ecology. There has been much recent work on applying ILP in ecology (Bohan et al., 2011; Tamaddoni-
Nezhad et al., 2014; Bohan et al., 2017). For instance, Bohan et al. (2011) use ILP to generate plausible and
testable hypotheses for trophic relations (‘who eats whom’) from ecological data.

Program analysis. Due to the expressivity of logic programs as a representation language, ILP systems
have found successful applications in software design. ILP systems have proven effective in learning SQL
queries (Albarghouthi et al., 2017; Sivaraman et al., 2019) and programming language semantics (Bartha
& Cheney, 2019). Other applications include code search (Sivaraman et al., 2019), in which an ILP system
interactively learns a search query from examples, and software specification recovery from execution
behaviour (Cohen, 1994b, 1995a).
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Data curation and transformation. Another successful application of ILP is in data curation and trans-
formation, which is again largely because ILP can learn executable programs. The most prominent ex-
ample of such tasks is string transformations, such as the example given in the introduction. There is
much interest in this topic, largely due to success in synthesising programs for end-user problems, such
as string transformations in Microsoft Excel (Gulwani, 2011). String transformations have become a stan-
dard benchmark for some recent ILP papers (Lin et al., 2014; Cropper et al., 2020; Cropper & Dumančić,
2020; Cropper & Morel, 2021; Cropper, 2019). Other transformation tasks include extracting values from
semi-structured data (e.g. XML files or medical records), extracting relations from ecological papers, and
spreadsheet manipulation (Cropper et al., 2015).

Learning from trajectories. Learning from interpretation transitions (LFIT) (Inoue et al., 2014) automati-
cally constructs amodel of the dynamics of a system from the observation of its state transitions44. Given
time-series data of discrete gene expression, it can learn gene interactions, thus allowing to explain and
predict states changes over time (Ribeiro et al., 2020). LFIT has been applied to learn biological models,
like Boolean Networks, under several semantics: memory-less deterministic systems (Inoue et al., 2014;
Ribeiro & Inoue, 2014), probabilistic systems (Martínez et al., 2015) and their multi-valued extensions
(Ribeiro et al., 2015; Martínez et al., 2016). Martínez et al. (2015, 2016) combine LFIT with a reinforcement
learning algorithm to learn probabilistic models with exogenous effects (effects not related to any ac-
tion) from scratch. The learner was notably integrated into a robot to perform the task of clearing the
tableware on a table. In this task external agents interacted, people brought new tableware continuously
and themanipulator robot had to cooperate with mobile robots to take the tableware to the kitchen. The
learner was able to learn a usable model in just five episodes of 30 action executions. Evans et al. (2021)
apply the Apperception Engine to explain sequential data, such as rhythms and simple nursery tunes, im-
age occlusion tasks, and sequence induction intelligence tests. They show that their system can perform
human-level performance.

Natural language processing. Many natural language processing tasks require an understanding of the
syntax and semantics of the language. ILP is well-suited for addressing such tasks for three reasons (i)
it is based on an expressive formal language that can capture/respect the syntax and semantics of the
natural language, (ii) linguistics knowledge and principles can be integrated into ILP systems, and (iii)
the learnt clauses are understandable to a linguist. ILP has been applied to learn grammars (Mooney &
Califf, 1995; Muggleton et al., 2014; Law et al., 2019) and parsers (Zelle & Mooney, 1996, 1995; Mooney, 1999)
from examples. For an extensive overview of language tasks that can benefit from ILP see the paper by
Dzeroski et al. (1999).

Physics-informed learning. A major strength of ILP is its ability to incorporate and exploit background
knowledge. Several ILP applications solve problems from first principles: provided physical models of
the basic primitives, ILP systems can induce the target hypothesis whose behaviour is derived from the
basic primitives. For instance, ILP systems can use a theory of light to understand images (Dai et al., 2017;
Muggleton et al., 2018). Similarly, simple electronic circuits can be constructed from the examples of the
target behaviour and the physics of basic electrical components (Grobelnik, 1992) and models of simple
dynamical systems can be learned given the knowledge about differential equations (Bratko et al., 1991).

Robotics. Similarly to the previous category, robotics applications often require incorporating domain
knowledge or imposing certain requirements on the learnt programs. For instance, The Robot Engi-
neer (Sammut et al., 2015) uses ILP to design tools for robots and even complete robots, which are tests

44. The LFIT implementations are available at https://github.com/Tony-sama/pylfit
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in simulations and real-world environments. Metagolo (Cropper & Muggleton, 2015) learns robot strate-
gies considering their resource efficiency and Antanas et al. (2015) recognise graspable points on objects
through relational representations of objects.

Games. Inducing game rules has a long history in ILP, where chess has often been the focus (Goodacre,
1996; Morales, 1996; Muggleton et al., 2009). For instance, Bain (1994) studies inducing rules to determine
the legality of moves in the chess KRK (king-rook-king) endgame. Castillo and Wrobel (2003) uses a top-
down ILP system and active learning to induce a rule for when a square is safe in the gameminesweeper.
Legras et al. (2018) show that Aleph and TILDE can outperform an SVM learner in the game of Bridge. Law
et al. (2014) uses ILASP to induce the rules for Sudoku and show that this more expressive formalism
allows for game rules to be expressed more compactly. Cropper et al. (2020b) introduce the ILP prob-
lem of inductive general game playing: the problem of inducing game rules from observations, such as
Checkers, Sokoban, and Connect Four.

Other. Other notable applications include learning event recognition systems (Katzouris et al., 2015,
2016), tracking the evolution of online communities (Athanasopoulos et al., 2018), the MNIST dataset
(Evans & Grefenstette, 2018), and requirements engineering (Alrajeh et al., 2013).

8. Related Work

8.1 Program Synthesis

Because ILP induces programs, it is also a form of program synthesis (Shapiro, 1983), where the goal
is to build a program from a specification. Universal induction methods, such as Solomonoff induction
(Solomonoff, 1964a, 1964b) and Levin search (Levin, 1973) are forms of program synthesis. However, uni-
versal methods are impractical because they learn only from examples and, as Mitchell (1997) points out,
bias-free learning is futile.

Deductive program synthesis approaches (Manna & Waldinger, 1980) take full specifications as input
and are efficient at building programs. Universal induction methods take only examples as input and are
inefficient at building programs. There is an area in between called inductive program synthesis45. Similar
to universal induction methods, inductive program synthesis systems learn programs from incomplete
specifications, typically input/output examples. In contrast to universal induction methods, inductive
program synthesis systems use BK, and are thus less general than universal methods, but are more
practical because the BK is a form of inductive bias (Mitchell, 1997) which restricts the hypothesis space.
When given no BK, and thus no inductive bias, inductive program synthesis methods are equivalent to
universal induction methods.

Early work on inductive program synthesis includes Plotkin (1971) on least generalisation, Vera (1975)
on induction algorithms for predicate calculus, Summers (1977) on inducing Lisp programs, and Shapiro
(1983) on inducing Prolog programs. Interest in inductive program synthesis has grown recently, partly
due to applications in real-world problems, such as end-user programming (Gulwani, 2011). Inductive
program synthesis interests researchers frommany areas of computer science, notably ML and program-

45. Inductive program synthesis is often called program induction (Lin et al., 2014; Lake et al., 2015; Cropper, 2017; Ellis et al.,
2018), programming by example (Lieberman, 2001), and inductive programming (Gulwani et al., 2015), amongst many other
names. Gulwani et al. (2017) divide inductive program synthesis into two categories: (i) program induction, and (ii) program
synthesis. They say that program induction approaches are neural architectures that learn a network that is capable of
replicating the behaviour of a program. By contrast, they say that program synthesis approaches output or return an
interpretable program.
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ming languages (PL). The two major46 differences between ML and PL approaches are (i) the generality of
solutions (synthesised programs) and (ii) noise handling. PL approaches often aim to find any program
that fits the specification, regardless of whether it generalises. Indeed, PL approaches rarely evaluate
the ability of their systems to synthesise solutions that generalise, i.e. they do notmeasure predictive ac-
curacy (Feser et al., 2015; Osera & Zdancewic, 2015; Albarghouthi et al., 2017; Si et al., 2018; Raghothaman
et al., 2020). By contrast, the major challenge in ML (and thus ILP) is learning hypotheses that generalise
to unseen examples. Indeed, it is often trivial to learn an overly specific solution for a given problem.
For instance, an ILP system can trivially construct the bottom clause (Muggleton, 1995) for each example.
Similarly, noise handling is a major problem in ML, yet is rarely considered in the PL literature.

Besides ILP, inductive program synthesis has been studied inmany areas of ML, including deep learn-
ing (Balog et al., 2017; Ellis et al., 2018, 2019). The main advantages of neural approaches are that they
can handle noisy BK, as illustrated by ∂ ILP, and can harness tremendous computational power (Ellis
et al., 2019). However, neural methods often require many more examples (Reed & de Freitas, 2016; Dong
et al., 2019) to learn concepts that symbolic ILP can learn from just a few. Another disadvantage of neural
approaches is that they often require hand-crafted neural architectures for each domain. For instance,
the REPL approach (Ellis et al., 2019) needs a hand-crafted grammar, interpreter, and neural architec-
ture for each domain. By contrast, because ILP uses logic programming as a uniform representation for
examples, BK, and hypotheses, it can easily be applied to arbitrary domains.

8.2 StarAI

As ILP builds upon logic programs and logical foundations of knowledge representation, ILP also inherits
one of their major limitations: the inability to handle uncertain or incorrect BK. To overcome this limita-
tion, the field of statistical relational artificial intelligence (StarAI) (De Raedt & Kersting, 2008b; De Raedt
et al., 2016) unites logic programming with probabilistic reasoning.

StarAI formalisms allow a user to explicitly quantify the confidence in the correctness of the BK by
annotating parts of BK with probabilities. Perhaps the simplest flavour of StarAI languages, and the one
that directly builds upon logic programming and Prolog, is a family of languages based on distribution
semantics (Sato, 1995; Sato & Kameya, 2001; De Raedt et al., 2007). Problog (De Raedt et al., 2007), a
prominent member of this family, represents a minimal extension of Prolog that supports such stochas-
tic execution. Problog introduces two types of probabilistic choices: probabilistic facts and annotated
disjunctions. Probabilistic facts are the most basic stochastic unit in Problog. They take the form of
logical facts labeled with a probability p and represent a Boolean random variable that is true with
probability p and false with probability 1 − p . For instance, the following probabilistic fact states that
there is 1% chance of an earthquake in Naples.

0.01::earthquake(naples).

In contrast to deterministic logic programs in which a fact is always true if so stated, the Problog engine
determines the truth assignment of a probabilistic fact when it encounters it during SLD resolution,
the main execution principle of logic programs. How often a fact is deemed true or false is guided
by the stated probability. An alternative interpretation of this statement is that 1% of executions of
the probabilistic program would observe an earthquake. Whereas probabilistic facts introduce non-
deterministic behaviour on the level of facts, annotated disjunctions introduce non-determinism on the
level of clauses. Annotated disjunctions allow for multiple literals in the head, but only one of the head

46. Minor differences include the form of specification and theoretical results.
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literals can be true at a time. For instance, the following annotated disjunction states that a ball can be
either green, red, or blue, but not a combination of colours:

1

3
::colour(B,green); 1

3
::colour(B,red); 1

3
::colour(B,blue) :- ball(B).

Though StarAI frameworks allow for incorrect BK, they add another level of complexity to learning: be-
sides identifying the right program (also called structure in StarAI), the learning task also consists of
learning the corresponding probabilities of probabilistic choices (also calledparameters). Learning prob-
abilistic logic programs is largely unexplored, with only a few existing approaches (De Raedt et al., 2015;
Bellodi & Riguzzi, 2015).

8.3 Neural ILP

The successes of deep learning on various tasks have prompted researchers to investigate whether these
techniques can be used to solve the ILP problem. What makes this research direction interesting is that
the techniques are based on numerical optimisation and, if successful, could learn programs without
combinatorial search, which is the core reason why ILP is a difficult problem. However, to leverage these
techniques, ILP needs to be framed as a problem over a fixed set of variables, which is perhaps unnatural
given that hypothesis spaces in ILP are combinatorial and essentially infinite. Additionally, integrating
neural networks into ILP would make it possible for ILP to deal with unstructured data, such as images
and sound, and noise associated with unstructured data. While integrating ILP and program synthesis
with neural networks is a proliferating area, relatively few approaches tackle the ILP problem.

The majority of existing neural-ILP systems reframe the ILP problem as structure learning by pa-
rameter learning. Neural-ILP techniques make the ILP problem amenable to numerical optimisation by
assuming that the entire hypothesis space is the solution program, instead of one member of it. As such
a solution program would be able to entail almost anything, neural-ILP techniques relax the notion of
entailment. That is, every member c of the hypothesis space is associated with valuationwc which indi-
cate the confidence that the entailments of c are correct. A fact entailed by c is said to be entailed with
valuationwc ; a valuation of a fact is then the sum of valuations of all c that entail it. Consequently, the
notion of entailment loses its crispness and needs to be interpreted in the continuous spectrum. The
learning task is then to fit the valuations such that positive examples have high valuations and the valua-
tions of negative examples are low, for which any numerical optimisation techniques can be used. These
techniques make the hypothesis space finite by limiting its complexity and consequently only learn syn-
tactically simple programs (e.g., the ones up to two literals and two clauses). The prominent examples
of this paradigm are ∂ ILP, neural theorem provers (Rocktäschel & Riedel, 2017), DiffLog (Si et al., 2019)
and LRNN (Sourek et al., 2018).

At the time of publishing, only one approach can simultaneously learn a logic program that trains
a neural network to solve a sensory part of the task (Dai & Muggleton, 2021). Dai and Muggleton (Dai
& Muggleton, 2021) extends ILP with an abductive step (Flach & Hadjiantonis, 2013) that deduces labels
for training neural networks from background knowledge and currently explored program. The authors
demonstrate that their framework can learn arithmetic and sorting operations from digits represented
as images. This is an underexplored research direction that holds a lot of promise in making ILP more
capable of handling noise and unstructured data.
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8.4 Representation Learning

As introduced in Section 5.5, predicate invention (PI) – changing the representation of a problem by
introducing new predicates symbols defined in terms of provided predicates – is one of the major open
challenges in ILP. PI shares the goal with feature or representation learning (Bengio et al., 2013) stream of
research originating in the deep learning community (LeCun et al., 2015). Representation learning aims to
re-represent given data, be it an image or a relational knowledge base, in a vector space such that certain
semantic properties are preserved. For instance, to represent a knowledge base (specified as a logic
program) in a vector space, representation learning methods replace every constant and predicate with
a vector such that the vectors of constants often appears in facts together are close in vector space. The
benefit of such representation change is that now any tabular machine learning approach can operate on
complex relational structures. The central goal of representation learning coincides with the one behind
PI: improving learning performance by changing the representation of a problem.

Despite strong connections, there is little interaction between PI and representation learning. The
main challenges in transferring the ideas from representation learning to PI are their different operating
principles. It is not clear how symbolic concepts can be invented through table-based learning princi-
ples that current representation learning approaches use. Only a few approaches (Dumančić & Blockeel,
2017; Dumančić et al., 2019; Sourek et al., 2018) start from the core ideas in representation learning, strip
them of numerical principles and re-invent them from symbolic principles. A more common approach
is to transform relational data into a propositional tabular form that can be used as an input to a neu-
ral network (Dash et al., 2018; Kaur et al., 2019, 2020). A disadvantage of the latter approaches is that
they only apply to propositional learning tasks, not to first-order program induction tasks where infinite
domains are impossible to propositionalise. Approaches that force neural networks to invent symbolic
constructs, such as ∂ ILP and neural theorem provers (Rocktäschel & Riedel, 2017), do so by sacrificing
the expressivity of logic (they can only learn short Datalog programs).

9. Summary And Limitations

In a survey paper from a decade ago, Muggleton et al. (2012) proposed directions for future research.
There have since been major advances in many of these directions, including in PI (Section 5.5), using
higher-order logic as a representation language (Section 4.4.2) and for hypotheses (Section 4.2.3), and
applications in learning actions and strategies (Section 7). We think that these and other recent advances
put ILP in a prime position to have a significant impact on AI over the next decade, especially to address
the key limitations of standard forms of ML. There are, however, still many limitations that future work
should address.

9.1 Limitations

User-friendly systems. Muggleton et al. (2012) argue that a problemwith ILP is the lack ofwell-engineered
tools. They state that whilst over 100 ILP systems have been built since the founding of ILP in 1991, less
than a handful of systems can be meaningfully used by ILP researchers. One reason is that ILP systems
are often only designed as prototypes and are often not well-engineered or maintained. Another major
problem is that ILP systems are notoriously difficult to use: you often need a PhD in ILP to use any of
the tools. Even then, it is still often only the developers of a system that know how to properly use it.
This difficulty of use is compounded by ILP systems often using many different biases or even different
syntax for the same biases. For instance, although they all use mode declarations, the way of specifying
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a learning task in Progol, Aleph, TILDE, and ILASP varies considerably. If it is difficult for ILP researchers to
use ILP tools, then what hope do non-ILP researchers have? For ILP to be more widely adopted both in-
side and outside of academia, we must developmore standardised, user-friendly, and better-engineered
tools.

Language biases. ILP allows a user to provide BK and a language bias. Both are important and powerful
features, but only when used correctly. For instance, Metagol employsmetarules (Section 4.4.2) to restrict
the syntax of hypotheses and thus the hypothesis space. If a user can provide suitable metarules, then
Metagol is extremely efficient. However, if a user cannot provide suitable metarules (which is often the
case), then Metagol is almost useless. This same brittleness applies to ILP systems that employ mode
declarations (Section 4.4.1). In theory, a user can provide very general mode declarations, such as only
using a single type and allowing unlimited recall. In practice, however, weakmode declarationsoften lead
to very poor performance. For good performance, users of mode-based systems often need to manually
analyse a given learning task to tweak the mode declarations, often through a process of trial and error.
Moreover, if a user makes a small mistake with a mode declaration, such as giving the wrong argument
type, then the ILP system is unlikely to find a good solution. This need for an almost perfect language
bias is severely holding back ILP from being widely adopted. To address this limitation, we think that
an important direction for future work is to develop techniques for automatically identifying suitable
language biases. Although there is some work on mode learning (McCreath & Sharma, 1995; Ferilli et al.,
2004; Picado et al., 2017) and work on identifying suitable metarules (Cropper & Tourret, 2020), this area
of research is largely under-researched.

PI and abstraction. Russell (2019) argues that the automatic invention of new high-level concepts is the
most important step needed to reach human-level AI. Newmethods for PI (Section 5.5) have improved the
ability of ILP to invent such high-level concepts. However, PI is still difficult and there aremany challenges
to overcome. For instance, in inductive general game playing (Cropper et al., 2020b), the task is to learn
the symbolic rules of games from observations of gameplay, such as learning the rules of connect four.
The reference solutions for the games come from the general game playing competition (Genesereth &
Björnsson, 2013) and often contain auxiliary predicates to make them simpler. For instance, the rules
for connect four are defined in terms of definitions for lines which are themselves defined in terms of
columns, rows, and diagonals. Although these auxiliary predicates are not strictly necessary to learn the
reference solution, inventing such predicates significantly reduces the size of the solution (sometimes by
multiple orders of magnitude), which in turnmakes themmuch easier to learn. Although newmethods for
PI (Section 5.5) can invent high-level concepts, they are not yet sufficiently powerful enough to perform
well on the IGGP dataset. Making progress in this area would constitute a major advancement in ILP and
a major step towards human-level AI.

Lifelong learning. Because of its symbolic representation, a key advantage of ILP is that learned knowl-
edge can be remembered and explicitly stored in the BK. For this reason, ILP naturally supports lifelong
(Silver et al., 2013), multi-task (Caruana, 1997), and transfer learning (Torrey & Shavlik, 2009), which are
considered essential for human-like AI (Lake et al., 2016). The general idea behind all of these approaches
is to reuse knowledge gained from solving one problem to help solve a different problem. Although early
work in ILP explored this form of learning (Sammut, 1981; Quinlan, 1990), it has been under-explored until
recently (Lin et al., 2014; Cropper, 2019, 2020; Hocquette&Muggleton, 2020; Dumancic et al., 2021), mostly
because of new techniques for PI. For instance, Lin et al. (2014) learn 17 string transformations programs
over time and show that their multi-task approach performs better than a single-task approach because
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learned programs are frequently reused. However, these approaches have only been demonstrated on a
small number of tasks. To reach human-level AI, we would expect a learner to learn thousands or even
millions of concepts. But handling the complexity of thousands of tasks is challenging because, as we
explained in Section 4.3, ILP systems struggle to handle large amounts of BK. This situation leads to the
problem of catastrophic remembering (Cropper, 2020): the inability for a learner to forget knowledge.
Although there is initial work on this topic (Cropper, 2020), we think that a key area for future work is
handling the complexity of lifelong learning.

Relevance. The catastrophic remembering problem is essentially the problem of relevance: given a new
ILP problem with lots of BK, how does an ILP system decide which BK is relevant? Although too much
irrelevant BK is detrimental to learning performance (Srinivasan et al., 1995, 2003), there is almost no
work in ILP on trying to identify relevant BK. One emerging technique is to train a neural network to score
how relevant programs are in the BK and to then only use BK with the highest score to learn programs
(Balog et al., 2017; Ellis et al., 2018). However, the empirical efficacy of this approach has yet to be clearly
demonstrated. Moreover, these approaches have only been demonstrated on small amounts of BK and
it is unclear how they scale to BK with thousands of relations. Without efficient relevancy methods, it is
unclear how lifelong learning can be achieved.

Noisy BK. Another issue related to lifelong learning is the underlying uncertainty associatedwith adding
learned programs to the BK. By the inherent nature of induction, induced programs are not guaranteed to
be correct (i.e. are expected to be noisy), yet they are the building blocks for subsequent induction. Build-
ing noisy programs on top of other noisy programs could lead to eventual incoherence of the learned
program. This issue is especially problematic because, as mentioned in Section 5.1, most ILP approaches
assume noiseless BK, i.e. a relation is true or false without any room for uncertainty. One of the appeal-
ing features of ∂ ILP is that it takes a differentiable approach to ILP, where it can be provided with fuzzy
or ambiguous data. Developing similar techniques to handle noisy BK is an under-explored topic in ILP.

Probabilistic ILP. A principled way to handle noise is to unify logical and probabilistic reasoning, which
is the focus of statistical relational artificial intelligence (StarAI) (De Raedt et al., 2016). While StarAI is a
growing field, inducing probabilistic logic programs has received little attention, with few notable excep-
tions (Bellodi & Riguzzi, 2015; De Raedt et al., 2015), as inference remains the main challenge. Addressing
this issue, i.e. unifying probability and logic in an inductive setting, would be a major achievement (Mar-
cus, 2018).

Explainability. Explainability is one of the claimed advantages of a symbolic representation. Recent
work (Muggleton et al., 2018; Ai et al., 2021) evaluates the comprehensibility of ILP hypotheses using
Michie’s (1988) framework of ultra-strong ML, where a learned hypothesis is expected to not only be
accurate but to also demonstrably improve the performance of a human being provided with the learned
hypothesis. Muggleton et al. (2018) empirically demonstrate improved human understanding directly
through learned hypotheses. However, more work is required to better understand the conditions under
which this can be achieved, especially given the rise of PI.

Learning from raw data. Most ILP systems require data in perfect symbolic form. However, much real-
world data, such as images and speech, cannot easily be translated into a symbolic form. Perhaps the
biggest challenge in ILP is to learn how to both perceive sensory input and learn a symbolic logic program
to explain the input. For instance, consider a task of learning to perform addition from MNIST digits. Cur-
rent ILP systems need to be given as BK symbolic representations of the digits, which could be achieved
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by first training a neural network to recognise the digits. Ideally, we would not want to treat the two
problems separately, but rather simultaneously learn how to recognise the digits and learn a program
to perform the addition. A handful of approaches have started to tackle this problem (Manhaeve et al.,
2018; Dai et al., 2019; Evans et al., 2021; Dai & Muggleton, 2021), but developing better ILP techniques that
can both perceive sensory input and learn complex relational programs would be a major breakthrough
not only for ILP, but the whole of AI.

Further Reading

For an introduction to the fundamentals of logic and automated reasoning, we recommend the book of
Harrison (2009). To read more about ILP, then we suggest starting with the founding paper by Muggleton
(1991) and a survey paper that soon followed (Muggleton & De Raedt, 1994). For a detailed exposition of
the theory of ILP, we thoroughly recommend the books of Nienhuys-Cheng and Wolf (1997) and De Raedt
(2008).
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